• Home
  • Journals
  • For Authors
    • Why Publish With Us
    • Manuscript Preparation
    • Journal Indexing
    • Similarity Index
    • Article Processing Charge
  • Review and Editorial
    • Review Policy
    • Editorial Policy
    • Terms and Conditions
  • Archive
  • Contact Us
JOURNAL BINET
  • Home
  • Journals
  • For Authors
    • Why Publish With Us
    • Manuscript Preparation
    • Journal Indexing
    • Similarity Index
    • Article Processing Charge
  • Review and Editorial
    • Review Policy
    • Editorial Policy
    • Terms and Conditions
  • Archive
  • Contact Us

Asian Journal of Crop, Soil Science and Plant Nutrition

You are here: Home>AJCSP Journal​>AJCSP Archive>Article Page: ajcsp-060121-27.html
submit Manuscript
Asian J. Crop. Soil Plan. Nutri. | Volume 06, Issue 01, 221-232 | https://doi.org/10.18801/ajcsp.060121.27
​Article type: Research article | Received: 26.08.2021; Revised: 12.10.2021; First published online: 15 November, 2021.

How short-term residue management and tillage impacts nematodes in tropical agricultural soils

Imtiaz Miah
Department of Agricultural Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh.

✉   Article correspondence: [email protected] (Miah, I).
Abstract
Rapid population growth and ever-increasing food demand have compelled land transformation for crop production, especially in humid tropical regions. Most of the agricultural practices in this region greatly rely on the soil organic matter (SOM) content. Among those practices, tillage and residue management are most common throughout the region. Nematode composition and diversity provide essential information on SOM decomposition status and nutrient cycling in soil. To highlight the impacts of these two management practices on nematodes in tropical agricultural soils, relevant peer-reviewed literature of the past 17 years (until 2017) was searched and compiled. This review revealed that intense application of those agricultural practices changes the composition of nematodes without essentially reducing the trophic groups. Short-term residue management surpassed the impacts of tillage operation, while no residue management changes the population dynamics of nematodes. Quality and placement of residues significantly affect nematode abundance as well as diversity. Residues with a high C:N ratio showed higher fungivore abundance, and buried residue application showed higher bacterivore abundance. Tillage intensity rapidly depletes both organic matter (OM) and water in soil, and detrimental to soil aggregate stability and nematode diversity. Therefore, zero tillage has been suggested for the recovery of soil microfauna. Future research can focus on restoring a disturbed soil ecosystem faster with appropriate residue management.
 
Key Words: Tillage, Residue management, Soil microfauna, Nematode, Fungivore, Bacterivore and Parasite
Article Full-Text PDF:
27.06.02.21_how_short-term_residue_management_and_tillage_impacts_nematodes_in_tropical_agricultural_soils.pdf
File Size: 776 kb
File Type: pdf
Download File

Article Metrics:

Share This Article
Article Citations
MLA
Miah, I. “How short-term residue management and tillage impacts nematodes in tropical agricultural soils”. Asian Journal of Crop, Soil Science and Plant Nutrition, 06(01), (2021): 221-232.
 
APA
Miah, I. (2021). How short-term residue management and tillage impacts nematodes in tropical agricultural soils. Asian Journal of Crop, Soil Science and Plant Nutrition, 06(01), 221-232.
 
Chicago
Miah, I. “How short-term residue management and tillage impacts nematodes in tropical agricultural soils”. Asian Journal of Crop, Soil Science and Plant Nutrition, 06(01), (2021): 221-232.
 
Harvard
Miah, I. 2021. How short-term residue management and tillage impacts nematodes in tropical agricultural soils. Asian Journal of Crop, Soil Science and Plant Nutrition, 06(01), pp. 221-232.
 
Vancouver
Miah, I. How short-term residue management and tillage impacts nematodes in tropical agricultural soils. Asian Journal of Crop, Soil Science and Plant Nutrition, November 2021, 06(01), 221-232.
References
  1. Bardgett, R. D. and McAlister, E. (1999). The measurement of soil fungal: bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biology and Fertility of Soils, 29(3), 282-290. https://doi.org/10.1007/s003740050554
  2. Beare, M. H., Hendrix, P. F. and Coleman, D. C. (1994). Water-stable aggregates and organic matter fractions in conventional-and no-tillage soils. Soil Science Society of America Journal, 58(3), 777-786. https://doi.org/10.2136/sssaj1994.03615995005800030021x
  3. Bongers, T. (1999). The maturity index, the evolution of nematode life history traits, adaptive radiation and cp-scaling. Plant and soil, 212(1), 13-22.
  4. Bongers, T. and Bongers, M. (1998). Functional diversity of nematodes. Applied Soil Ecology, 10(3), 239-251. https://doi.org/10.1016/S0929-1393(98)00123-1
  5. Bongers, T. and Ferris, H. (1999). Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology and Evolution, 14(6), 224-228. https://doi.org/10.1016/S0169-5347(98)01583-3
  6. Bouwman, L. A. and Zwart, K. B. (1994). The ecology of bacterivorous protozoans and nematodes in arable soil. Agriculture, ecosystems & environment, 51(1-2), 145-160. https://doi.org/10.1016/0167-8809(94)90040-X
  7. Bulte, E., Hector, A. and Larigauderie, A. (2005). eco SERVICES: assessing the impacts of biodiversity changes on ecosystem functioning and services. Diversitas Report, 3, 40.
  8. Cambardella, C. A. and Elliott, E. T. (1992). Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Science Society of America Journal, 56(3), 777-783. https://doi.org/10.2136/sssaj1992.03615995005600030017x
  9. Castro Filho, C., Lourenço, A., Guimarães, M. D. F. and Fonseca, I. C. B. (2002). Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil and Tillage Research, 65(1), 45-51. https://doi.org/10.1016/S0167-1987(01)00275-6
  10. Christanty, L. (1986). Shifting cultivation and tropical soils: patterns, problems, and possible improvements. Traditional agriculture in Southeast Asia. A human ecology perspective., 226-240.
  11. Coudrain, V., Hedde, M., Chauvat, M., Maron, P. A., Bourgeois, E., Mary, B. and Recous, S. (2016). Temporal differentiation of soil communities in response to arable crop management strategies. Agriculture, Ecosystems & Environment, 225, 12-21.
  12. Dion, P. (Ed.). (2010). Soil biology and agriculture in the tropics. Berlin, Germany: Springer. https://doi.org/10.1007/978-3-642-05076-3
  13. Djigal, D., Brauman, A., Diop, T. A., Chotte, J. L. and Villenave, C. (2004). Influence of bacterial-feeding nematodes (Cephalobidae) on soil microbial communities during maize growth. Soil Biology and Biochemistry, 36(2), 323-331. https://doi.org/10.1016/j.soilbio.2003.10.007
  14. Dorris, M., De Ley, P. and Blaxter, M. L. (1999). Molecular analysis of nematode diversity and the evolution of parasitism. Parasitology today, 15(5), 188-193. https://doi.org/10.1016/S0169-4758(99)01439-8
  15. Ettema, C. H. and Bongers, T. (1993). Characterization of nematode colonization and succession in disturbed soil using the Maturity Index. Biology and Fertility of Soils, 16(2), 79-85. https://doi.org/10.1007/BF00369407
  16. Ferris, H., Bongers, T. and De Goede, R. G. M. (2001). A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Applied soil ecology, 18(1), 13-29. https://doi.org/10.1016/S0929-1393(01)00152-4
  17. Ferris, H., Venette, R. C. and Lau, S. S. (1996). Dynamics of nematode communities in tomatoes grown in conventional and organic farming systems, and their impact on soil fertility. Applied Soil Ecology, 3(2), 161-175. https://doi.org/10.1016/0929-1393(95)00071-2
  18. Fiscus, D. A. and Neher, D. A. (2002). Distinguishing sensitivity of free‐living soil nematode genera to physical and chemical disturbances. Ecological Applications, 12(2), 565-575. https://doi.org/10.1890/1051-0761(2002)012[0565:DSOFLS]2.0.CO;2
  19. Fu, S., Coleman, D. C., Hendrix, P. F. and Crossley, D. A. (2000). Responses of trophic groups of soil nematodes to residue application under conventional tillage and no-till regimes. Soil Biology and Biochemistry, 32(11), 1731-1741. https://doi.org/10.1016/S0038-0717(00)00091-2
  20. Giller, K. E., Bignell, D. E., Lavelle, P. A. T. R. I. C. K., Swift, M. J., Barrios, E. D. M. U. N. D. O., Moreira, F. A. T. I. M. A. and Huising, J. E. R. O. E. N. (2005). Soil biodiversity in rapidly changing tropical landscapes: scaling down and scaling up. Biological Diversity and Function in Soils. Cambridge University Press, Cambridge, 295-318. https://doi.org/10.1017/CBO9780511541926.017
  21. Golabi, M. H., El-Swaify, S. A. and Iyekar, C. (2014). Experiment of "No-Tillage" Farming System on the Volcanic Soils of Tropical Islands of Micronesia. International Soil and Water Conservation Research, 2(2), 30-38. https://doi.org/10.1016/S2095-6339(15)30004-6
  22. Goodsell, P. J., Underwood, A. J. and Chapman, M. G. (2009). Evidence necessary for taxa to be reliable indicators of environmental conditions or impacts. Marine Pollution Bulletin, 58(3), 323-331. https://doi.org/10.1016/j.marpolbul.2008.10.011
  23. Grandière, I., Razafimbelo, T., Barthes, B., Blanchart, E., Louri, J., Ferrer, H. and Feller, C. (2007). Effet de différents systemes en semis direct avec couverture végétale (SCV) sur la distribution granulo-densimétrique de la matiere organique d’un sol argileux des Hautes Terres de Madagascar. Etude et Gestion des Sols, 14, 117-133.
  24. Háněl, L. (2003). Recovery of soil nematode populations from cropping stress by natural secondary succession to meadow land. Applied Soil Ecology, 22(3), 255-270. https://doi.org/10.1016/S0929-1393(02)00152-X
  25. Háněl, L. (2010). An outline of soil nematode succession on abandoned fields in South Bohemia. Applied soil ecology, 46(3), 355-371. https://doi.org/10.1016/j.apsoil.2010.10.005
  26. Hendrix, P. F., Parmelee, R. W., Crossley, D. A., Coleman, D. C., Odum, E. P. and Groffman, P. M. (1986). Detritus food webs in conventional and no-tillage agroecosystems. Bioscience, 36(6), 374-380. https://doi.org/10.2307/1310259
  27. Hooper, D. U., Chapin, F. S., Ewel, J. J., Hector, A., Inchausti, P., Lavorel, S. and Schmid, B. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological monographs, 75(1), 3-35. https://doi.org/10.1890/04-0922
  28. Huang, M., Liang, T., Wang, L. and Zhou, C. (2015). Effects of no-tillage systems on soil physical properties and carbon sequestration under long-term wheat–maize double cropping system. Catena, 128, 195-202. https://doi.org/10.1016/j.catena.2015.02.010
  29. Ingham, R. E., Trofymow, J. A., Ingham, E. R. and Coleman, D. C. (1985). Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecological monographs, 55(1), 119-140. https://doi.org/10.2307/1942528
  30. Kihara, J., Martius, C., Bationo, A., Thuita, M., Lesueur, D., Herrmann, L. and Vlek, P. L. (2012). Soil aggregation and total diversity of bacteria and fungi in various tillage systems of sub-humid and semi-arid Kenya. Applied Soil Ecology, 58, 12-20. https://doi.org/10.1016/j.apsoil.2012.03.004
  31. Kleinman, P. J. A., Pimentel, D. and Bryant, R. B. (1995). The ecological sustainability of slash-and-burn agriculture. Agriculture, Ecosystems & Environment, 52(2-3), 235-249. https://doi.org/10.1016/0167-8809(94)00531-I
  32. Lampurlanés, J., Angás, P. and Cantero-Martınez, C. (2001). Root growth, soil water content and yield of barley under different tillage systems on two soils in semiarid conditions. Field Crops Research, 69(1), 27-40. https://doi.org/10.1016/S0378-4290(00)00130-1
  33. Lenz, R. and Eisenbeis, G. (2000). Short-term effects of different tillage in a sustainable farming system on nematode community structure. Biology and Fertility of Soils, 31(3), 237-244. https://doi.org/10.1007/s003740050651
  34. Li, N., Pan, F. J., Han, X. Z. and Zhang, B. (2016). Development of soil food web of microbes and nematodes under different agricultural practices during the early stage of pedogenesis of a Mollisol. Soil Biology and Biochemistry, 98, 208-216.
  35. Liang, W., Lou, Y., Li, Q., Zhong, S., Zhang, X. and Wang, J. (2009). Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China. Soil Biology and Biochemistry, 41(5), 883-890. https://doi.org/10.1016/j.soilbio.2008.06.018
  36. Löbmann, M. T., Vetukuri, R. R., de Zinger, L., Alsanius, B. W., Grenville-Briggs, L. J. and Walter, A. J. (2016). The occurrence of pathogen suppressive soils in Sweden in relation to soil biota, soil properties, and farming practices. Applied Soil Ecology, 107, 57-65. https://doi.org/10.1016/j.apsoil.2016.05.011
  37. Maia, S. M., Ogle, S. M., Cerri, C. C. and Cerri, C. E. (2010). Changes in soil organic carbon storage under different agricultural management systems in the Southwest Amazon Region of Brazil. Soil and Tillage Research, 106(2), 177-184. https://doi.org/10.1016/j.still.2009.12.005
  38. Martínez, E., Fuentes, J. P., Silva, P., Valle, S. and Acevedo, E. (2008). Soil physical properties and wheat root growth as affected by no-tillage and conventional tillage systems in a Mediterranean environment of Chile. Soil and Tillage Research, 99(2), 232-244.
  39. Mills, A. A. S. and Adl, M. S. (2011). Changes in nematode abundances and body length in response to management intensive grazing in a low-input temperate pasture. Soil Biology and Biochemistry, 43(1), 150-158. https://doi.org/10.1016/j.soilbio.2010.09.027
  40. Minoshima, H., Jackson, L. E., Cavagnaro, T. R., Sánchez-Moreno, S., Ferris, H., Temple, S. R. and Mitchell, J. P. (2007). Soil food webs and carbon dynamics in response to conservation tillage in California. Soil Science Society of America Journal, 71(3), 952-963.
  41. Nakamoto, T., Komatsuzaki, M., Hirata, T. and Araki, H. (2012). Effects of tillage and winter cover cropping on microbial substrate-induced respiration and soil aggregation in two Japanese fields. Soil science and plant nutrition, 58(1), 70-82.
  42. Nwaga, D., Jansa, J., Angue, M. A. and Frossard, E. (2010). The Potential of Soil Beneficial Micro-Organisms for Slash-and-Burn Agriculture in the Humid Forest Zone of Sub-Saharan Africa. Soil Biology and Agriculture in the Tropics, 81–107. https://doi.org/10.1007/978-3-642-05076-3
  43. Okada, H. and Harada, H. (2007). Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Applied Soil Ecology, 35(3), 582-598.
  44. Palm, C. A., Giller, K. E., Mafongoya, P. L. and Swift, M. J. (2001). Management of organic matter in the tropics: translating theory into practice. In Managing Organic Matter in Tropical Soils: Scope and Limitations (pp. 63-75). Springer Netherlands. https://doi.org/10.1007/978-94-017-2172-1_7
  45. Razafimbelo, T. M., Albrecht, A., Oliver, R., Chevallier, T., Chapuis-Lardy, L. and Feller, C. (2008). Aggregate associated-C and physical protection in a tropical clayey soil under Malagasy conventional and no-tillage systems. Soil and Tillage Research, 98(2), 140-149. https://doi.org/10.1016/j.still.2007.10.012
  46. Ribeiro Filho, A. A., Adams, C. and Murrieta, R. S. S. (2013). The impacts of shifting cultivation on tropical forest soil: a review. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, 8(3), 693-727. https://doi.org/10.1590/S1981-81222013000300013
  47. Rousk, J., Bååth, E., Brookes, P. C., Lauber, C. L., Lozupone, C., Caporaso, J. G. and Fierer, N. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME journal, 4(10), 1340. https://doi.org/10.1038/ismej.2010.58
  48. Schloter, M., Dilly, O. and Munch, J. C. (2003). Indicators for evaluating soil quality. Agriculture, Ecosystems & Environment, 98(1), 255-262. https://doi.org/10.1016/S0167-8809(03)00085-9
  49. Six, J., Feller, C., Denef, K., Ogle, S., de Moraes Sa, J. C. and Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils-Effects of no-tillage. Agronomie, 22(7-8), 755-775. https://doi.org/10.1051/agro:2002043
  50. Stirling, G. R. (2013). Integration of organic amendments, crop rotation, residue retention and minimum tillage into a subtropical vegetable farming system enhances suppressiveness to root-knot nematode (Meloidogyne incognita). Australasian Plant Pathology, 42(6), 625-637. https://doi.org/10.1007/s13313-013-0236-9
  51. Suter, G. W. (2001). Applicability of indicator monitoring to ecological risk assessment. Ecological Indicators, 1(2), 101-112. https://doi.org/10.1016/S1470-160X(01)00011-5
  52. Swift, M. J., Izac, A. M. and van Noordwijk, M. (2004). Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions?. Agriculture, Ecosystems & Environment, 104(1), 113-134. https://doi.org/10.1016/j.agee.2004.01.013
  53. Treonis, A. M., Austin, E. E., Buyer, J. S., Maul, J. E., Spicer, L. and Zasada, I. A. (2010). Effects of organic amendment and tillage on soil microorganisms and microfauna. Applied Soil Ecology, 46(1), 103-110. https://doi.org/10.1016/j.apsoil.2010.06.017
  54. Tripathi, B. and Kang, B. (1992). THE AFNETA: Alley Farming Training Manual. Source Book For Alley Farming Research (Vol. 2). Alley Farming Network for Tropical Africa, International Institute of Tropical Agriculture, Ibadan, Addis Ababa, Ethiopia
  55. Tripathi, B. M., Kim, M., Singh, D., Lee-Cruz, L., Lai-Hoe, A., Ainuddin, A. N. and Adams, J. M. (2012). Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microbial ecology, 64(2), 474-484. https://doi.org/10.1007/s00248-012-0028-8
  56. Trumbore, S. E. (1993). Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochemical Cycles, 7(2), 275-290. https://doi.org/10.1029/93GB00468
  57. USDA (1978). Soil Taxonomy. Agriculture Handbook No. 436, USDA, Soil Conservation Service, Washington DC.
  58. Van Capelle, C., Schrader, S. and Brunotte, J. (2012). Tillage-induced changes in the functional diversity of soil biota–A review with a focus on German data. European Journal of Soil Biology, 50, 165-181. https://doi.org/10.1016/j.ejsobi.2012.02.005
  59. Vestergård, M. (2004). Nematode assemblages in the rhizosphere of spring barley (Hordeum vulgare L.) depended on fertilisation and plant growth phase. Pedobiologia, 48(3), 257-265. https://doi.org/10.1016/j.pedobi.2004.01.003
  60. Villenave, C., Bongers, T., Ekschmitt, K., Fernandes, P. and Oliver, R. (2003). Changes in nematode communities after manuring in millet fields in Senegal. Nematology, 5(3), 351-358. https://doi.org/10.1163/156854103769224340
  61. Villenave, C., Rabary, B., Kichenin, E., Djigal, D. and Blanchart, E. (2010). Earthworms and plant residues modify nematodes in tropical cropping soils (Madagascar): a mesocosm experiment. Applied and Environmental Soil Science, 323640.
  62. Wang, K. H., McSorley, R. and Gallaher, R. N. (2004). Relationship of soil management history and nutrient status to nematode community structure. Nematropica, 34(1), 83-96.
  63. Wardle, D. A. (1995). Impacts of disturbance on detritus food webs in agro-ecosystems of contrasting tillage and weed management practices. Advances in ecological research, 26, 105-185. https://doi.org/10.1016/S0065-2504(08)60065-3
  64. Yan, S., Singh, A. N., Fu, S., Liao, C., Wang, S., Li, Y. and Hu, L. (2012). A soil fauna index for assessing soil quality. Soil Biology and Biochemistry, 47, 158-165.
  65. Yeates, G. W. (2003). Nematodes as soil indicators: functional and biodiversity aspects. Biology and Fertility of Soils, 37(4), 199-210. https://doi.org/10.1007/s00374-003-0586-5
  66. Yeates, G. W. and Bongers, T. (1999). Nematode diversity in agroecosystems. Agriculture, Ecosystems and Environment, 74(1), 113-135. https://doi.org/10.1016/S0167-8809(99)00033-X
  67. Zhang, X., Li, Q., Zhu, A., Liang, W., Zhang, J. and Steinberger, Y. (2012). Effects of tillage and residue management on soil nematode communities in North China. Ecological Indicators, 13(1), 75-81. https://doi.org/10.1016/j.ecolind.2011.05.009
  68. Zhang, Z. Y., Zhang, X. K., Jhao, J. S., Zhang, X. P. and Liang, W. J. (2015). Tillage and rotation effects on community composition and metabolic footprints of soil nematodes in a black soil. European Journal of Soil Biology, 66, 40-48. https://doi.org/10.1016/j.ejsobi.2014.11.006
  69. Zhong, S., Zeng, H. C. and Jin, Z. Q. (2017). Influences of different tillage and residue management systems on soil nematode community composition and diversity in the tropics. Soil Biology and Biochemistry, 107, 234-243. https://doi.org/10.1016/j.soilbio.2017.01.007

© 2021 The Authors. This article is freely available for anyone to read, share, download, print, permitted for unrestricted use and build upon, provided that the original author(s) and publisher are given due credit. All Published articles are distributed under the Creative Commons Attribution 4.0 International License.
​Require any changes or update in this article? Please contact from HERE.
Asian Journal of Crop, Soil Science and Plant Nutrition EISSN ​2706-5510​.

For Authors

Browse journals
​
Manuscript preparation
Author downloads
Journal indexing
Journal help
​Journal blog

Submit Manuscript

Submission

Join as reviewer
Copyright: Journal BiNET 2014-2023. All rights reserved. Terms | Privacy | Feedback | Advertise with us | We are hiring !
  • Home
  • Journals
  • For Authors
    • Why Publish With Us
    • Manuscript Preparation
    • Journal Indexing
    • Similarity Index
    • Article Processing Charge
  • Review and Editorial
    • Review Policy
    • Editorial Policy
    • Terms and Conditions
  • Archive
  • Contact Us