Journal of Bioscience and Agriculture Research |
|
Research article:
Screening of brinjal lines to high salinity levels
A. F. M. Jamal Uddin (a), S. Mutahera (a), H. Mehraj (b), K. Momena (c) and A. S. M. Nahiyan (c)
aDept. of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
bThe United Graduate School of Agricultural Sciences, Ehime University, Japan
cAdvanced Seed Research and Biotech Center, ACI Limited, Dhaka, Bangladesh
J. bios. agric. res. | Volume 07, Issue 02, pp. 630-637 | Available online: 25 March 2016
DOI: http://dx.doi.org/10.18801/jbar.070216.75
Screening of brinjal lines to high salinity levels
A. F. M. Jamal Uddin (a), S. Mutahera (a), H. Mehraj (b), K. Momena (c) and A. S. M. Nahiyan (c)
aDept. of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
bThe United Graduate School of Agricultural Sciences, Ehime University, Japan
cAdvanced Seed Research and Biotech Center, ACI Limited, Dhaka, Bangladesh
J. bios. agric. res. | Volume 07, Issue 02, pp. 630-637 | Available online: 25 March 2016
DOI: http://dx.doi.org/10.18801/jbar.070216.75
screening_of_brinjal_lines_to_high_salinity_levels.pdf |
Title: Screening of brinjal lines to high salinity levels
Abstract: A pot experiment was conducted at the Sher-e-Bangla Agricultural University, Bangladesh during the months of November 2012 to April 2013 for screening the salt tolerant brinjal lines. Ten lines coded from V1 (Line-1) to V10 (Line-10) were executed under different salinity conditions (S0: Control; S1: 12dS/m and S2: 16 dS/m) following completely randomized design (CRD) with three replication. Maximum yield was provided by V1 and V6 (2.4 kg/plant) in 12 dS/m salinity level and V6 provided the maximum yield (1.3 kg/plant) which was closely followed by V1 (1.2 kg/plant) in 16 dS/m salinity level whereas 4.1 kg/plant and 3.8 kg/plant from V6 and V1 respectively in control. From the current study it can be stated that V6 and V1 lines were the best lines to grow in the highly saline affected areas in Bangladesh but varietal development form promising line and further field trials in different areas is recommended.
Key Words: Solanum melongena, Brinjal lines, Salinity levels, Growth and Yield
Abstract: A pot experiment was conducted at the Sher-e-Bangla Agricultural University, Bangladesh during the months of November 2012 to April 2013 for screening the salt tolerant brinjal lines. Ten lines coded from V1 (Line-1) to V10 (Line-10) were executed under different salinity conditions (S0: Control; S1: 12dS/m and S2: 16 dS/m) following completely randomized design (CRD) with three replication. Maximum yield was provided by V1 and V6 (2.4 kg/plant) in 12 dS/m salinity level and V6 provided the maximum yield (1.3 kg/plant) which was closely followed by V1 (1.2 kg/plant) in 16 dS/m salinity level whereas 4.1 kg/plant and 3.8 kg/plant from V6 and V1 respectively in control. From the current study it can be stated that V6 and V1 lines were the best lines to grow in the highly saline affected areas in Bangladesh but varietal development form promising line and further field trials in different areas is recommended.
Key Words: Solanum melongena, Brinjal lines, Salinity levels, Growth and Yield
APA (American Psychological Association)
Jamal Uddin, A. F. M., Mutahera, S., Mehraj, H., Momena, K. & Nahiyan, A. S. M. (2016). Screening of brinjal lines to high salinity levels. Journal of Bioscience and Agriculture Research, 07(02), 630-637.
MLA (Modern Language Association)
Jamal Uddin, A. F. M., Mutahera, S., Mehraj, H., Momena, K. & Nahiyan, A. S. M. "Screening of brinjal lines to high salinity levels." Journal of Bioscience and Agriculture Research, 07.02 (2016), 630-637.
Chicago/Turabian
Jamal Uddin, A. F. M., Mutahera, S., Mehraj, H., Momena, K. & Nahiyan, A. S. M. Screening of brinjal lines to high salinity levels. Journal of Bioscience and Agriculture Research, 07, no. 02 (2016), 630-637.
Jamal Uddin, A. F. M., Mutahera, S., Mehraj, H., Momena, K. & Nahiyan, A. S. M. (2016). Screening of brinjal lines to high salinity levels. Journal of Bioscience and Agriculture Research, 07(02), 630-637.
MLA (Modern Language Association)
Jamal Uddin, A. F. M., Mutahera, S., Mehraj, H., Momena, K. & Nahiyan, A. S. M. "Screening of brinjal lines to high salinity levels." Journal of Bioscience and Agriculture Research, 07.02 (2016), 630-637.
Chicago/Turabian
Jamal Uddin, A. F. M., Mutahera, S., Mehraj, H., Momena, K. & Nahiyan, A. S. M. Screening of brinjal lines to high salinity levels. Journal of Bioscience and Agriculture Research, 07, no. 02 (2016), 630-637.
- Adams, P. (1991). Effects of increasing the salinity of the nutrient solution with major nutrients or sodium chloride on the yield, quality and composition of tomatoes grown in rockwool. Journal HortScience, 66, 201-207. http://dx.doi.org/10.1080/00221589.1991.11516145
- Aktas, H., Abak, K. & Cakmak, I. (2006). Genotypic variation in the response of pepper to salinity. Scientia Horticulture, 110, 260-266. http://dx.doi.org/10.1016/j.scienta.2006.07.017
- Al-Karaki, G. N. (2000). Growth, water use efficiency and sodium and potassium acquisition by tomato cultivars grown under salt stress. Journal of Plant Nutrition, 23, 1–8. http://dx.doi.org/10.1080/01904160009381992
- Allen, R. G., Pereria, L. S., Raes, D. & Smith, M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No. 56.
- Bresler, E., McNeal, B. L. & Carter, D. L. (1982). Saline and Sodic Soils. Springer-Verlag: Berlin. http://dx.doi.org/10.1007/978-3-642-68324-4
- Brugnoli, E. &Lauteri, M. (1991). Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiology, 95, 628–635. http://dx.doi.org/10.1104/pp.95.2.628
- Cruz, V. & Cuartero, J. (1990). Effect of salinity at several developmental stages of six genotypes of tomato (Lycopersicon spp.) In: Cuartero J, Gomez-Guillamon M, Fernandez-Munoz R. Edition, Malaga, Spain, pp. 81-86.
- Cuartero, J. & Fernandez–Munoz, R. (1999). Tomato and salinity. Scientia Hortic. 78: 83-125. http://dx.doi.org/10.1016/S0304-4238(98)00191-5
- Ehret, D. L. & Ho, L. C. 1986. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient fillm culture. Journal of Horticultural Sciences, 61, 361-367. http://dx.doi.org/10.1080/14620316.1986.11515714
- Gomez, K. A. & Gomez, A. A. 1984. Statistical Procedures for Agricultural Research. 2nd edn. John Wiley and Sons. New York. p. 680.
- Grattan, S. R. & Grieve, C. M. (1999). Salinity–mineral nutrient relations in horticultural crops. Scientia Horticulture, 78, 127-157. http://dx.doi.org/10.1016/S0304-4238(98)00192-7
- Johnson, R. W., Dixon, M. A. & Lee, D. R. (1992). Water relations of the tomato fruit during growth. Plant Cell Environment, 15: 947-953. http://dx.doi.org/10.1111/j.1365-3040.1992.tb01027.x
- Kaya, C., Higgs, D., Ince, F., Amador, B. M., Cakir, A. & Sakar, E. (2003). Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. Journal of Plant Nutrition, 26, 807-820. http://dx.doi.org/10.1081/PLN-120018566
- Lamsal, K., Paudyal, G. N. & Saeed, M. (1999). Model for assessing impact of salinity on soil water availability and crop yield. Agricultural Water Management, 41, 57–70. http://dx.doi.org/10.1016/S0378-3774(98)00116-4
- Maas, E. V. (1984). Salt tolerance of plants. In The Handbook of Plant Science in Agriculture, Christie BR (ed.). CEC Press: Boca Raton, Fla.
- Maggio, A., Raimondi, G., Martino, A. & Pascale, S. (2006). Salt response in tomato beyond the salinity tolerance threshold. Environmental and experimental botany. Department of Agricultural Engineering and Agronomy of the University of Naples Federico II, Italy 11: 131-141.
- Mansour, M. M. F. (2003). Transport proteins and salt tolerance in plants. Plant Sci. 164, 891-900. http://dx.doi.org/10.1016/S0168-9452(03)00109-2
- Mondal, M. R. I., Islam, M. S., Jalil, M. A. B., Rahman, M. M., Alam, M. S. & Rahman, M. H. H. (2011). Krishi projukti hatboi (Handbook of Agro-technology), 5th edition. Bangladesh Agricultural Research Institute, Gazipur-1701, Bangladesh, pp. 407-408.
- Montesano, F. & Van Iersel, M. W. (2007). Calcium can prevent toxic effects of Na+ on tomato leaf photosynthesis but does not restore growth. Journal of the American Society for Horticultural Science, 132, 310-318.
- Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell Environment, 25, 239–250. http://dx.doi.org/10.1046/j.0016-8025.2001.00808.x
- Munns, R. & Termaat, A. (1986). Whole-plant responses to salinity. Australian Journal of Plant Physiology, 13, 143-160. http://dx.doi.org/10.1071/PP9860143
- Romero-Aranda, R., Soria, T. & Cuartero, J. (2001). Tomato plant-water uptake and plant-water relationships under saline growth conditions. Plant Science, 160, 265–272. http://dx.doi.org/10.1016/S0168-9452(00)00388-5
- Rus, A. M., Estan, M. T., Gisbert, C., Garcia-Sogo, B., Serrano, R., Caro, M., Moreno, V. & Bolarin, M. C. (2001). Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environment, 24, 875-880. http://dx.doi.org/10.1046/j.1365-3040.2001.00719.x
- Sairam, R. K., Rao, K. V. & Srivastava, G. C. (2002). Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science, 163, 1037-1046. http://dx.doi.org/10.1016/S0168-9452(02)00278-9
- Savvas, D. & Lenz, F. (2000). Effect of NaCl or nutrient-induced salinity on growth, yield and composition of eggplant grown in rockwooll. Scientia Horticulture, 84, 37-47. http://dx.doi.org/10.1016/S0304-4238(99)00117-X
- Serrano, R. & Rodriquez-Navarro, A. (2001). Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology, 13, 399–404. http://dx.doi.org/10.1016/S0955-0674(00)00227-1
- Sivritepe, N., Sivritepe, H. O. & Eris, A. (2003). The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Scientia Horticulture 97: 229-237. http://dx.doi.org/10.1016/S0304-4238(02)00198-X
- Turhan, A., Seniz, V. & Kuscu, H. (2009). Genotypic variation in the response of tomato to salinity. African Journal of Biotechnology, 8(6), 1062-1068.
- Willumsen, J., Petersen, K. K. & Kaack, K. (1996). Yield and blossom-end rot of tomato as affected by salinity and cation activity ratios in the root zone. Journal of Horticultural Sciences, 71, 81-98. http://dx.doi.org/10.1080/14620316.1996.11515385
- Wilson, C., Lesch, M. S. & Grieve, C. M. (2000). Growth stage modulates salinity tolerance of New Zealand spinach and red orach. Annals of Botany, 85, 501-509. http://dx.doi.org/10.1006/anbo.1999.1086
- Yildirim, E., Taylor, A. G. & Spittler, T. D. (2006). Ameliorative effects of biological treatments on growth of squash plants under salt stress. Scientia Horticulture, 111, 1-6. http://dx.doi.org/10.1016/j.scienta.2006.08.003
- Zeng, L., Poss, J., Wilson, C., Draz, A. S. E. & Grieve, C. M. (2003). Evaluation of salt tolerance in rice genotypes by physiological characters. Euphytica, 129, 281-292. http://dx.doi.org/10.1023/A:1022248522536
Open Access | Read Article
© Jamal Uddin et al. (2016). This article published by Journal BiNET is freely available for anyone to read, share, download, print, permitted for unrestricted use and build upon, provided that the original author(s) and publisher are given due credit. All Published articles are distributed under the Creative Commons Attribution 4.0 International License.