Journal of Bioscience and Agriculture Research |
|
Research article:
Agrobacterium-mediated genetic transformation in Brassica species
S. C. Das, L. Hassan and M. A. Quddus
Dept. of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
J. bios. agric. res. | Volume 07, Issue 02, pp. 647-658 | Available online: 31 March 2016
DOI: http://dx.doi.org/10.18801/jbar.070216.77
Agrobacterium-mediated genetic transformation in Brassica species
S. C. Das, L. Hassan and M. A. Quddus
Dept. of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
J. bios. agric. res. | Volume 07, Issue 02, pp. 647-658 | Available online: 31 March 2016
DOI: http://dx.doi.org/10.18801/jbar.070216.77
77_agrobacterium-mediated_genetic__transformation_in_brassica_species.pdf |
Title: Agrobacterium-mediated genetic transformation in Brassica species
Abstract: An efficient and reproducible protocol for the production of transgenic Brassica plants was developed by inoculating hypocotyl explants with Agrobacterium tumefaciens strain LBA4404 carrying a binary vector pBI121, which contains selectable marker gene nptII conferring resistance to kanamycin and the GUS reporter gene. The transformation experiment was performed by optimizing two important parameters: preculture period and co-cultivation period. Infection was most effective when explants were precultured for three days (68.75% GUS positive) and co-cultivated for three days (82.92% GUS positive) with Agrobacterium. Among the varieties, BARI sarisa-8 showed the highest response to GUS assay (64.38% GUS positive). Callus induction was highest in Rai-5 (10%) and three day period of preculture and co-cultivation (12.33 and 13.33%, respectively). Transformation percentage was also highest in Rai-5 (4.75%), and three day period of preculture and co-cultivation (7.50 and 5.42%, respectively). Highest percentage (33.33) of root induction from transgenic shoots was observed in ½ MS + 0.5 mgL-1 NAA + 50 mgL-1 kanamycin + 50 mgL-1 cefotaxime. Among the varieties, BARI sarisa-8 produced the highest percentage (37.78) of rooted shoots.
Key Words: Agrobacterium tumefaciens, Brassica, Co-cultivation, Preculture and Transformation
Abstract: An efficient and reproducible protocol for the production of transgenic Brassica plants was developed by inoculating hypocotyl explants with Agrobacterium tumefaciens strain LBA4404 carrying a binary vector pBI121, which contains selectable marker gene nptII conferring resistance to kanamycin and the GUS reporter gene. The transformation experiment was performed by optimizing two important parameters: preculture period and co-cultivation period. Infection was most effective when explants were precultured for three days (68.75% GUS positive) and co-cultivated for three days (82.92% GUS positive) with Agrobacterium. Among the varieties, BARI sarisa-8 showed the highest response to GUS assay (64.38% GUS positive). Callus induction was highest in Rai-5 (10%) and three day period of preculture and co-cultivation (12.33 and 13.33%, respectively). Transformation percentage was also highest in Rai-5 (4.75%), and three day period of preculture and co-cultivation (7.50 and 5.42%, respectively). Highest percentage (33.33) of root induction from transgenic shoots was observed in ½ MS + 0.5 mgL-1 NAA + 50 mgL-1 kanamycin + 50 mgL-1 cefotaxime. Among the varieties, BARI sarisa-8 produced the highest percentage (37.78) of rooted shoots.
Key Words: Agrobacterium tumefaciens, Brassica, Co-cultivation, Preculture and Transformation
APA (American Psychological Association)
Das, S. C., Hassan, L. & Quddus, M. A. (2016). Agrobacterium-mediated genetic transformation in Brassica species. Journal of Bioscience and Agriculture Research, 07(02), 647-658.
MLA (Modern Language Association)
Das, S. C., Hassan, L. & Quddus, M. A. "Agrobacterium-mediated genetic transformation in Brassica species." Journal of Bioscience and Agriculture Research, 07.02 (2016), 647-658.
Chicago/Turabian
Das, S. C., Hassan, L. & Quddus, M. A. Agrobacterium-mediated genetic transformation in Brassica species. Journal of Bioscience and Agriculture Research, 07, no. 02 (2016), 647-658.
Das, S. C., Hassan, L. & Quddus, M. A. (2016). Agrobacterium-mediated genetic transformation in Brassica species. Journal of Bioscience and Agriculture Research, 07(02), 647-658.
MLA (Modern Language Association)
Das, S. C., Hassan, L. & Quddus, M. A. "Agrobacterium-mediated genetic transformation in Brassica species." Journal of Bioscience and Agriculture Research, 07.02 (2016), 647-658.
Chicago/Turabian
Das, S. C., Hassan, L. & Quddus, M. A. Agrobacterium-mediated genetic transformation in Brassica species. Journal of Bioscience and Agriculture Research, 07, no. 02 (2016), 647-658.
- BBS. (2009).Year Book of Agricultural Statistics of Bangladesh. Bangladesh Bureau of Statistics. Statistics Division, Ministry of planning, Govt. of the Peoples Republic of Bangladesh. Dhaka.
- Binns, A. N. (1991). Transformation of wall deficient cultured tobacco protoplasts by Agrobacterium tumefaciens. Plant Physiol., 96, 498-506. http://dx.doi.org/10.1104/pp.96.2.498
- Cardoza, V. & Stewart, C. N. (2003). Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) form hypocotyl segment explants. Plant Cell Rep., 21, 599-604.
- Choi, P. S., Soh, W. Y., Kim, Y. S., Yoo, O. J. & Jiu, J. R. (1994). Genetic transformation and plant regeneration of water-melon using Agrobacterium tumefaciens. Plant Cell Rep. 13, 344-348. http://dx.doi.org/10.1007/BF00232634
- Confalonieri, M., Balestrazzi, A. & Bisoffi S. (1994). Genetic transformation of Populus nigra by Agrobacterium tumefaciens. Plant Cell Rep., 13, 256-261. http://dx.doi.org/10.1007/BF00233315
- De Block M., De Brower. D.& Tenning, P. (1989). Transformation of Brassica napus and Brassica oleracea using Agrobaeterium tumefaciens and the expression of the bar and neo genes in the Transgenic plants. Plant Physiol., 91, 694-701. http://dx.doi.org/10.1104/pp.91.2.694
- Ding, L. C., Hu, C. Y., Yeh, K. W. & Wang, P. J. (1998). Development of insect resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep., 17(11), 854-860. http://dx.doi.org/10.1007/s002990050497
- Downey, R. K. & Robbelen, G. 1989. Brassica species: Oil crops of the world, their breeding and utilization. Mc Graw Hill Publishing Co. New York. pp. 339-374.
- Figueiredo, S. F. L., Albarello, N. & Viana, V. R. C. (2001). Micropropagation of Rolliniamucosa (Jacq). Baill. In Vitro Cell Dev. Biol. Plant., 37, 471-475. http://dx.doi.org/10.1007/s11627-001-0083-1
- Fry, J., Barnason, A. &Horsch, R. B. (1987). Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep., 6, 321-325. http://dx.doi.org/10.1007/BF00269550
- Gardner, R. C. (1993). Gene transfer into tropical and subtropical crops. Scientia Hort., 55, 65-82. http://dx.doi.org/10.1016/0304-4238(93)90025-L
- Godwin, I., Todd, G., Ford-Lloyd, B. & Newbury, H. J. (1991). The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep., 9(12), 671-675. http://dx.doi.org/10.1007/BF00235354
- Hachey, J. E., Sharma, K. K. & Moloney, M. M. (1991). Efficient shoot regeneration of Brassica campestris using cotyledon explants cultured in vitro. Plant Cell Rep., 9 (100), 549-554. http://dx.doi.org/10.1007/bf00232329
- Jacq, B., Lesobre, O., Sangwn, R. S. & Sangwan-Norreel, B. S. (1993). Factors influencing T-DNA transfer in Agrobacterium-mediated transformation in sugarbeet. Plant Cell Rep., 12, 621-624. http://dx.doi.org/10.1007/BF00232811
- Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. (1987). GUS Fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J., 6, 3901-3907.
- Knutzon, D. S., Thompson, G. A., Radke, S. E., Johnson, W. B., Knauf, V. C. & Kridl, J. C. (1992). Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc. Natl. Acad. Sci. USA., 89, 2624-2628. http://dx.doi.org/10.1073/pnas.89.7.2624
- Mahmoudian, M., Yucel, M. & Octem, H. A. (2002). Transformation of Lentil (Lens culinaris M.) Cotyledonary Nodes by Vacuum Infiltration of Agrobacterium tumefaciens. Plant Molecular Biology Reporter., 20, 251-257. http://dx.doi.org/10.1007/BF02782460
- Meah, M. B.; Howlider, M. A. R. & Alam, M. K. (1985). Diseases of mustard and their control. Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh. p. 12.
- Moloney, M. M., Walker, J. M. & Sharma, K. K. (1989). High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep,. 8, 238-242. http://dx.doi.org/10.1007/BF00778542
- Murashige, T. & Skoog, F. (1962). A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant., 15, 473-497. http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
- Ovesna, J., Ptacek, L.&Opartny, Z. (1993). Factors influencing the regeneration capacity of oilseed rape and cauliflower in transformation experiments. Biol. Plant., 35, 107-112. http://dx.doi.org/10.1007/BF02921131
- Pua, E. C., Mehra Palta, A., Nagy, F. & Chua, N. H. (1987). Transgenic plants of Brassica napus L. Biotechnology, 5, 815-817. http://dx.doi.org/10.1038/nbt0887-815
- Radke, S. E., Andrews, B. M., Moloney, M. M., Crouch, M. L., Kridl, J. C. & Knauf, V. C. (1988). Transformation of Brassica napus L. using Agrobacteriumtumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor. Appl. Genet., 75, 685-694. http://dx.doi.org/10.1007/BF00265588
- Sangwan, R. S., Bourgeois, Y., Brown Supplement, Vasseur, G. & Sangwan-Norreel, B. S. (1992). Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation of Arabidopsis thalina. Planta., 118, 439-456.
- Spencer, P. A. & Towers, G. H. N. (1991). Restricted occurrence of acetophenone single compounds. Phytochemistry., 30, 2933-2937. http://dx.doi.org/10.1016/S0031-9422(00)98227-X
- Stewart, C. N. Jr., Adang, M. J., All, J. A., Raymer, P. L., Ramachandran, S. & Parrott, W. A. (1996). Insect control and dosage effect in transgenic canola containing a synthetic Bacillusthuringiensis cry1Ac gene. Plant physiol., 112, 115-120.
- Sunilkumar, G., Vijayachandra, K. & Veluthami, K. (1999). Pre-incubation of cut tobacco leaf promotes Agrobacterium-mediated transformation by increasing vir gene induction. Plant Sci., 141, 51-58. http://dx.doi.org/10.1016/S0168-9452(98)00228-3
- Tsukazaki, H., Kuginuki, Y., Aida, R & Suzuki, T. (2002). Agrobacterium-mediated transformation of a doubled haploid line of cabbage. Plant Cell Rep., 21(3), 257-262. http://dx.doi.org/10.1007/s00299-002-0506-4
- Walker, K. C. & Booth, E. J. (2001). Agricultural aspects of rape and other Brassica products. European Journal of Lipid Science and Technology, 103, 441-446. http://dx.doi.org/10.1002/1438-9312(200107)103:7<441::AID-EJLT441>3.0.CO;2-D
- Zhang, F. L., Takahata, Y., Watanabe, M. & Xu, J. B. (2000). Agrobacterium-mediated transformation of cotyledonary explants of Chinese cabbage (Brassica campestris L. spp. pekinensis). Plant Cell Rep.,19, 569-575. http://dx.doi.org/10.1007/s002990050775
Open Access | Read Article
© Das et al. (2016). This article published by Journal BiNET is freely available for anyone to read, share, download, print, permitted for unrestricted use and build upon, provided that the original author(s) and publisher are given due credit. All Published articles are distributed under the Creative Commons Attribution 4.0 International License.