Journal of Bioscience and Agriculture Research |
|
Review Article:
Functional analysis of plants srg-genes/transmembrane protein (RLKs) under stress condition
G. Garg and Ruchi Kumari
School of Biotechnology, Gautam Buddha University, Greater Noida, India
J. bios. agric. res. | Volume 09, Issue 02, pp. 827-836 | Available online: 14 September 2016
DOI: 10.18801/jbar.090216.100
Functional analysis of plants srg-genes/transmembrane protein (RLKs) under stress condition
G. Garg and Ruchi Kumari
School of Biotechnology, Gautam Buddha University, Greater Noida, India
J. bios. agric. res. | Volume 09, Issue 02, pp. 827-836 | Available online: 14 September 2016
DOI: 10.18801/jbar.090216.100
100.09.02.16_functional_analysis_of_plants_srg-genes_transmembrane_protein__rlks__under_stress_condition.pdf |
Title: Functional analysis of plants srg-genes/transmembrane protein (RLKs) under stress condition
Abstract: Stress perception and plant response occurs via signal transduction pathways, regulates expression of several classes of stress responsive genes (srg-genes). The products of srg-gene include chaperones, osmotins, anti-freeze proteins, mRNA binding proteins, enzymes involved in osmolyte biosynthesis, water channel proteins, sugar and proline transport proteins, detoxification enzymes, a variety of proteases, proteins and protein kinases/ or receptor-like kinases (RLKs). Out of these srg-gene products, protein kinases (RLKs) are transmembrane proteins and they play an important role in optimizing plant responses under different types of stress. Protein kinases (RLKs) make up a large super-family of homologous proteins, which are subdivided within the two super-family (i) Protein-serine/ threonine kinases and (ii) Protein-tyrosine kinases. Plant RLKs are further classified into the six different classes (S-domain, LRR, TNFR, WAKs, PR, LecRLK), which performed different functions in plants. This review explored how stress-specific ‘ligands’ of different types of RLKs coordinately control various molecular events under stress conditions.
Key Words: Abiotic and biotic stress, Signaling, Receptor-like kinases and Stress responsive genes
Abstract: Stress perception and plant response occurs via signal transduction pathways, regulates expression of several classes of stress responsive genes (srg-genes). The products of srg-gene include chaperones, osmotins, anti-freeze proteins, mRNA binding proteins, enzymes involved in osmolyte biosynthesis, water channel proteins, sugar and proline transport proteins, detoxification enzymes, a variety of proteases, proteins and protein kinases/ or receptor-like kinases (RLKs). Out of these srg-gene products, protein kinases (RLKs) are transmembrane proteins and they play an important role in optimizing plant responses under different types of stress. Protein kinases (RLKs) make up a large super-family of homologous proteins, which are subdivided within the two super-family (i) Protein-serine/ threonine kinases and (ii) Protein-tyrosine kinases. Plant RLKs are further classified into the six different classes (S-domain, LRR, TNFR, WAKs, PR, LecRLK), which performed different functions in plants. This review explored how stress-specific ‘ligands’ of different types of RLKs coordinately control various molecular events under stress conditions.
Key Words: Abiotic and biotic stress, Signaling, Receptor-like kinases and Stress responsive genes
APA (American Psychological Association)
Garg, G. & Kumari, R. (2016). Functional analysis of plants srg-genes/ transmembrane protein (RLKs) under stress condition. Journal of Bioscience and Agriculture Research, 09(02), 827-836.
MLA (Modern Language Association)
Garg, G. & Kumari, R. "Functional analysis of plants srg-genes/ transmembrane protein (RLKs) under stress condition". Journal of Bioscience and Agriculture Research, 09.02 (2016), 827-836.
Chicago/Turabian
Garg, G. & Kumari, R. Functional analysis of plants srg-genes/ transmembrane protein (RLKs) under stress condition. Journal of Bioscience and Agriculture Research, 09, no. 02 (2016), 827-836.
Garg, G. & Kumari, R. (2016). Functional analysis of plants srg-genes/ transmembrane protein (RLKs) under stress condition. Journal of Bioscience and Agriculture Research, 09(02), 827-836.
MLA (Modern Language Association)
Garg, G. & Kumari, R. "Functional analysis of plants srg-genes/ transmembrane protein (RLKs) under stress condition". Journal of Bioscience and Agriculture Research, 09.02 (2016), 827-836.
Chicago/Turabian
Garg, G. & Kumari, R. Functional analysis of plants srg-genes/ transmembrane protein (RLKs) under stress condition. Journal of Bioscience and Agriculture Research, 09, no. 02 (2016), 827-836.
- Alcazar, R., Garcia, A. V., Kronholm, .I, de Meaux, J., Koornneef, M., Parker, J. E. & Reymond, M. (2010). Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nature Genetics, 42, 1135. http://dx.doi.org/10.1038/ng.704
- Arnaud, D., Theveniau, D. M. & Zimmerli, L. (2012). Disease resistance to Pectobacterium carotovorum is negatively modulated by the Arabidopsis Lectin Receptor Kinase LecRK-V.5. Plant Signal Behaviour, 7, 1070. http://dx.doi.org/10.4161/psb.21013 PMid:22899085 PMCid:PMC3489629
- Bai, L., Zhang, G., Zhou, Y., Zhang, Z., Wang, W., Du, Y., Wu, Z. & Song, C. P. (2009). Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana. The Plant Journal, 60, 314. http://dx.doi.org/10.1111/j.1365-313X.2009.03956.x PMid:19566594
- Becraft, P. W., Stinards, P. S., McCarthy, D. R. & Crinkly (1996). A TNFR-like receptor kinase involved in maize epidermal differentiation. Science, 273, 1406. http://dx.doi.org/10.1126/science.273.5280.1406
- Betsuyaku, S., Takahashi, F., Kinoshita, A., Miwa, H., Shinozaki, K., Fukuda, H. & Sawa, S (2011). Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant and Cell Physiology, 52, 14. http://dx.doi.org/10.1093/pcp/pcq157 PMid:20965998 PMCid:PMC3023851
- Bishop, G. J. & Koncz, C. (2002). Brassinosteroids and plant steroid hormone signaling. Plant Cell, 14, S97. PMid:12045272 PMCid:PMC151250
- Chen, K., Du, L. & Chen, Z. (2003). Sensitation of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Molecular Biology, 53, 61. http://dx.doi.org/10.1023/B:PLAN.0000009265.72567.58 PMid:14756307
- Chen, K., Fan, B., Du, L. & Chen, Z. (2004). Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Molecular Biology, 56(2), 271. http://dx.doi.org/10.1007/s11103-004-3381-2 PMid:15604743
- Chen, L. J., Wuriyanghan, H., Zhang, Y. Q., Duan, K. X., Chen, H. W., Li, Q. T., Xiang, L., He, S. J., Biao, M., Zhang, W. K., Lin, Q., Chen, S. Y. & Zhang, J. S. (2013). An S-Domain Receptor-Like Kinase, OsSIK2, Confers Abiotic Stress Tolerance and Delays Dark-Induced Leaf Senescence in Rice, Plant Physiology, 163(4), 1752. http://dx.doi.org/10.1104/pp.113.224881 PMid:24143807 PMCid:PMC3850199
- Chen, X. W., Shang, J. J. & Chen, D. X. (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant Journal, 6, 794. http://dx.doi.org/10.1111/j.1365-313X.2006.02739.x PMid:16709195
- Chen, Z. (2001). A super-family of proteins with novel cysteine-rich repeats. Plant Physiology, 126(2), 473. http://dx.doi.org/10.1104/pp.126.2.473 PMid:11402176 PMCid:PMC1540112
- Clark, S. E., Williams, R. W. & Meyerowifz, E. M. (1997). A CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89, 575. http://dx.doi.org/10.1016/S0092-8674(00)80239-1
- Czernic, P., Visser, B., Sun, W., Savouré, A., Deslandes, L., Marco, Y., Van Montagu, M. & Verbruggen, N. (1999). Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. Plant Journal, 18(3), 321. http://dx.doi.org/10.1046/j.1365-313X.1999.00447.x PMid:10377997
- DeFalco, T. A., Chiasson, D., Munro, K., Kaiser, B. N. & Snedden, W. A. (2010). Characterization of GmCaMK1, a member of a soybean calmodulin-binding receptor-like kinase family. FEBS Letters, 584, 4717. http://dx.doi.org/10.1016/j.febslet.2010.10.059 PMid:21056039
- Deng, K., Wang, Q., Zeng, J., Guo, X., Zhao, X., Tang, D. & Liu, X. (2009). A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response, Journal of Plant Biology, 52, 493. http://dx.doi.org/10.1007/s12374-009-9063-5
- Diévart & Clark, S. E. (2004). LRR-containing receptors regulating plant development and defense. Development, 131, 251. PMid:14701679
- Divi, U. K. & Krishna, P. (2009). Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. Nature Biotechnology, 26, 131. http://dx.doi.org/10.1016/j.nbt.2009.07.006
- Hanks, S. K. & Hunter, T. (1995). Protein kinases 6: The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB Journal, 9(8), 576. PMid:7768349
- Hardie, D. G. (1999). Roles of the AMP-activated/SNF1 protein kinase family in the response to cellular stress. Biochemistry Society Symposium, 64, 13. PMid:10207618
- He, Z. H., Fujiki, M. & Kohom, B. D. (1996). A cell wall associated receptor like protein kinase. Journal Biolology Chemistry, 271, 19789. http://dx.doi.org/10.1074/jbc.271.33.19789
- He, Z. H., He, D. & Kohom, B. D. (1998). Requirement for the induced expression of a cell wall associated recetor kinase for survival during the pathogen response. Plant Journal, 14, 55. http://dx.doi.org/10.1046/j.1365-313X.1998.00092.x
- Hua, D., Wang, C., He, J., Liao, H., Duan, Y., Zhu, Z., Guo, Y., Chen, Z. & Gong, Z. (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. The Plant Cell, 24, 2546. http://dx.doi.org/10.1105/tpc.112.100107 PMid:22730405 PMCid:PMC3406912
- Jinn, T. L., Stone, J. M. & Walker, J. C. (2000). HAESA and Arabidopsis leucin-rich repeats receptor kinase, control floral organ abscission. Genes Development, 14, 108.
- Jones, D. A. & Jones, J. D. G. (1996). The roles of leucine-rich repeat proteins in plant defenses. Advance Botany Research/Advance Plant Pathology, 24, 90.
- Kinoshita, A., Betsuyaku, S., Osakabe, Y., Mizuno, S., Nagawa, S., Stahl, Y., Simon, R., Yamaguchi-Shinozaki, K., Fukuda, H. & Sawa, S. (2010). RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development, 137, 3911. http://dx.doi.org/10.1242/dev.048199 PMid:20978082
- Klaus-Heisen, D., Nurisso, A., Bogiel, A. P., Malick, M., Camut, S., Timmers, T., Carole, P., Michel, R., Theodorus, W. J. G., Anne, I., Benoit, L. & Julie, V. C. (2011). Structure–function similarities between a plant 488 receptor-like kinase and the human interleukin-1 receptor-associated kinase. Journal of Biology and Chemistry, 286, 11202. http://dx.doi.org/10.1074/jbc.M110.186171 PMid:21205819 PMCid:PMC3064175
- Lee, H., Quinn, J. C., Prasanth, K. V., Swiss, V. A., Economides, K. D., Camacho, M. M., Spector, D. L. & Abateshen, C. (2006). PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Development, 20, 784. http://dx.doi.org/10.1101/gad.1392006 PMid:16600910 PMCid:PMC1472282
- Lee, I. C., Hong, S. W., Whang, S. S., Lim, P. O., Nam, H. G. & Koo, J. C. (2011). Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant and Cell Physiology, 52, 651. http://dx.doi.org/10.1093/pcp/pcr026 PMid:21382977
- Li, J. & Chory, J. (1997). A putative leucine-rich repeat receptor-kinase involved in brassinosteroid signal transduction. Cell, 90, 929. http://dx.doi.org/10.1016/S0092-8674(00)80357-8
- Luo, X. M., Lin, W. H. & Zhu, S. (2010). Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Developmnt Cell, 19, 872. http://dx.doi.org/10.1016/j.devcel.2010.10.023
- Marshall, A., Aalen, R. B. & Audenaert, D. (2012). Tackling drought stress: receptor-like kinases present new approaches. The Plant Cell, 24, 2262. http://dx.doi.org/10.1105/tpc.112.096677
- McCarthy, D. R. & Chory, J. (2000). Conservation and innovation in plantsignalling pathways. Cell, 103(2), 201. http://dx.doi.org/10.1016/S0092-8674(00)00113-6
- Mizuno, S., Osakabe, Y., Maruyama, K., Ito, T., Osakabe, K., Sato, T., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. The Plant Journal, 50, 751. http://dx.doi.org/10.1111/j.1365-313X.2007.03083.x PMid:17419837
- Nasrallah, J. B. (2000). Cell-cell signaling in the self-incompatibility response. Current Opinion Plant Biology, 3, 368. http://dx.doi.org/10.1016/S1369-5266(00)00098-4
- Navarro-Gochicoa, M. T., Camut, S., Timmers, A. C. J., Niebel, A., Herv, C., Boutet, E., Bono, J. J., Imberty, A. & Cullimore, J. V. (2003). Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula: structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Plant Physiology, 133, 1893. http://dx.doi.org/10.1104/pp.103.027680 PMid:14630957 PMCid:PMC300742
- Nodine, M. D., Yadegari, R. & Tax, F. E. (2007). RPK1 and TOAD2 are two receptor-like kinases redundantly required for arabidopsis embryonic pattern formation. Development Cell, 12, 943. http://dx.doi.org/10.1016/j.devcel.2007.04.003 PMid:17543866
- Osakabe, Y., Mizuno, S., Tanaka, H., Maruyama, K., Osakabe, K., Todaka, D., Fujita, Y., Kobayashi, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2010). Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. Journal of Biology and Chemistry, 285, 9190. http://dx.doi.org/10.1074/jbc.m109.051938
- Pastuglia, M., Roby, D., Dumas, C. & Cock, J. M. (1997a). Rapid induction by wounding and bacterial infection of an 5 gene family receptor-like kinase gene in Brassica olerace. Plant Cell, 9, 49. http://dx.doi.org/10.1105/tpc.9.1.49 PMid:9014364 PMCid:PMC156900
- Pitorre, D., Llauro, C., Jobet, E., Guilleminot, J., Brizard, J. P., Delseny, M. & Lasserre, E. (2010). RLK7, A leucine-rich repeat receptor-like kinase, is required for proper germination speed and tolerance to oxidative stress in Arabidopsis thaliana. Planta, 232, 1339. http://dx.doi.org/10.1007/s00425-010-1260-4
- Racolta, A., Bryan, A. C. & Tax, F. E. (2013). The receptor-like kinases GSO1 and GSO2 together regulate root growth in Arabidopsis through control of cell division and cell fate specification, Development Dynamics, 243(2), 257. http://dx.doi.org/10.1002/dvdy.24066 PMid:24123341
- Shiu, S. H. & Bleecker, A. B. (2001). Plant receptor-like kinase gene family: Diversity, function, and signaling. Science, 1. http://dx.doi.org/10.1126/stke.2001.113.re22
- Shiu, S. H. & Bleecker, A. B. (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology, 132(2), 530. http://dx.doi.org/10.1104/pp.103.021964 PMid:12805585 PMCid:PMC166995
- Shiu, S. H., Karlowski, W. M., Pan, R., Tzeng, Y. H., Mayer, K. F. & Li, W. H. (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell, 16, 1220. http://dx.doi.org/10.1105/tpc.020834
- Smith, L. M., Bomblies, K. & Weigel, D. (2011). Complex evolutionary events at a tandem cluster of Arabidopsis thaliana genes resulting in a single-locus genetic incompatibility. PLoS Genetics, 7, e1002164. http://dx.doi.org/10.1371/journal.pgen.1002164 PMid:21779175 PMCid:PMC3136440
- Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., Gardner, J., Wang, B., Zhai, W. X., Zhu, L. H., Fauquet, C. & Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 279, 1804. http://dx.doi.org/10.1126/science.270.5243.1804
- Sun, X. L., Yu, Q. Y., Tang, L. L., Ji, W., Bai, X., Cai, H., Liu, X. F., Ding, X. D. & Zhu, Y. M. (2012). GsSRK, a G-type lectin S-receptorlike serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. Journal of Plant Physiology, 170, 505. http://dx.doi.org/10.1016/j.jplph.2012.11.017 PMid:23276523
- Sun, Y., Fan, X. Y. & Cao, D. M. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765. http://dx.doi.org/10.1016/j.devcel.2010.10.010 PMid:21074725 PMCid:PMC3018842
- Tang, W., Kim, T. W., Oses-Prieto, J. A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A. L. & Wang, Z. Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 321, 557. http://dx.doi.org/10.1126/science.1156973
- Torii, K. U. (2000). Receptor kinase activation and signal transduction in plants: An emerging picture. Current Opinion Plant Biology, 3, 361. http://dx.doi.org/10.1016/S1369-5266(00)00097-2
- Wang, G. L., Song, W. Y., Ruan, D. L., Sideris, S. & Ronald, P. C. (1996). The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant Microbes Interaction, 9, 850. http://dx.doi.org/10.1094/MPMI-9-0850 PMid:8969533
- Wang, X., Zafian, P., Choudhary, M. T. & Lawton, M. (1996). The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins: (defense response/pathogenesis-related proteins/signal transduction/protein phosphorylation). Proceedings of the National Academic of Science, 93. p. 2598. http://dx.doi.org/10.1073/pnas.93.6.2598
- Wang, Z. Y. (2012). Brassinosteroids modulate plant immunity at multiple levels, Proceedings of the National Academic of Science, 109, 7. http://dx.doi.org/10.1073/pnas.1118600109 PMid:22198764 PMCid:PMC3252925
- Wolters, H. & Jurgens, G. (2009). Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Review of Genetics, 10, 305. http://dx.doi.org/10.1038/nrg2558 PMid:19360022
- Yang, L. A., Ji, W., Zhu, Y. M., Gao, P., Li, Y., Cai, H., Bai, X. & Guo, D. J. (2010a). GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. Journal of Experimental Botany, 61, 2519. http://dx.doi.org/10.1093/jxb/erq084 PMid:20400529
- Yang, T., Chaudhuri, S., Yang, L., Du, L. & Poovaiah, B. W. (2010b). A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plant. Journal of Biology and Chemistry, 285, 7119. http://dx.doi.org/10.1074/jbc.M109.035659 PMCid:PMC2844161
- Zhang, M. P., Wu, Y. H., Lee, M. K., Liu, Y. H., Rong, Y., Santos, T. S., Wu, C. C., Xie, F. M., Nelson, R. L. & Zhang, H. B. (2010). Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors. Nucleic Acids Residues, 38, 6513. http://dx.doi.org/10.1093/nar/gkq524
Open Access | Read Article
© Garg and Kumari (2016). This article published by Journal BiNET is freely available for anyone to read, share, download, print, permitted for unrestricted use and build upon, provided that the original author(s) and publisher are given due credit. All Published articles are distributed under the Creative Commons Attribution 4.0 International License.