• Home
  • Journals
  • For Authors
    • Why Publish With Us
    • Manuscript Preparation
    • Journal Indexing
    • Similarity Index
    • Article Processing Charge
  • Review and Editorial
    • Review Policy
    • Editorial Policy
    • Terms and Conditions
  • Archive
  • Contact Us
JOURNAL BINET
  • Home
  • Journals
  • For Authors
    • Why Publish With Us
    • Manuscript Preparation
    • Journal Indexing
    • Similarity Index
    • Article Processing Charge
  • Review and Editorial
    • Review Policy
    • Editorial Policy
    • Terms and Conditions
  • Archive
  • Contact Us
​You are here: Home>JBAR Journal>JBAR-Volume-09>jbar-090216-100.html

Journal of Bioscience and Agriculture Research 

submit Manuscript

Review Article: 
Functional analysis of plants srg-genes/transmembrane protein (RLKs) under stress condition
 
G. Garg and Ruchi Kumari
 
School of Biotechnology, Gautam Buddha University, Greater Noida, India

​J. bios. agric. res. | Volume 09, Issue 02, pp. 827-836 | Available online: 14 September 2016
DOI: 
10.18801/jbar.090216.100
100.09.02.16_functional_analysis_of_plants_srg-genes_transmembrane_protein__rlks__under_stress_condition.pdf
File Size: 757 kb
File Type: pdf
Download File



  • Abstract
  • Citations
  • References
<
>
Title: Functional analysis of plants srg-genes/transmembrane protein (RLKs) under stress condition
​Abstract: Stress perception and plant response occurs via signal transduction pathways, regulates expression of several classes of stress responsive genes (srg-genes). The products of srg-gene include chaperones, osmotins, anti-freeze proteins, mRNA binding proteins, enzymes involved in osmolyte biosynthesis, water channel proteins, sugar and proline transport proteins, detoxification enzymes, a variety of proteases, proteins and protein kinases/ or receptor-like kinases (RLKs). Out of these srg-gene products, protein kinases (RLKs) are transmembrane proteins and they play an important role in optimizing plant responses under different types of stress. Protein kinases (RLKs) make up a large super-family of homologous proteins, which are subdivided within the two super-family (i) Protein-serine/ threonine kinases and (ii) Protein-tyrosine kinases.  Plant RLKs are further classified into the six different classes (S-domain, LRR, TNFR, WAKs, PR, LecRLK), which performed different functions in plants. This review explored how stress-specific ‘ligands’ of different types of RLKs coordinately control various molecular events under stress conditions.
Key Words: Abiotic and biotic stress, Signaling, Receptor-like kinases and Stress responsive genes
​APA (American Psychological Association)
Garg, G. & Kumari, R. (2016). Functional analysis of plants srg-genes/ transmembrane protein (RLKs) under stress condition. Journal of Bioscience and Agriculture Research, 09(02), 827-836.

MLA (Modern Language Association) 
Garg, G. & Kumari, R. "Functional analysis of plants srg-genes/ transmembrane protein (RLKs) under stress condition". Journal of Bioscience and Agriculture Research, 09.02 (2016), 827-836.

Chicago/Turabian
Garg, G. & Kumari, R. Functional analysis of plants srg-genes/ transmembrane protein (RLKs) under stress condition. Journal of Bioscience and Agriculture Research, 09, no. 02 (2016), 827-836.
  1. Alcazar, R., Garcia, A. V., Kronholm, .I, de Meaux, J., Koornneef, M., Parker, J. E. & Reymond, M. (2010). Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nature Genetics, 42, 1135. http://dx.doi.org/10.1038/ng.704
  2. Arnaud, D., Theveniau, D. M. & Zimmerli, L. (2012). Disease resistance to Pectobacterium carotovorum is negatively modulated by the Arabidopsis Lectin Receptor Kinase LecRK-V.5. Plant Signal Behaviour, 7, 1070. http://dx.doi.org/10.4161/psb.21013 PMid:22899085 PMCid:PMC3489629
  3. Bai, L., Zhang, G., Zhou, Y., Zhang, Z., Wang, W., Du, Y., Wu, Z. & Song, C. P. (2009). Plasma membrane-associated proline-rich extensin-like receptor kinase 4, a novel regulator of Ca signalling, is required for abscisic acid responses in Arabidopsis thaliana. The Plant Journal, 60, 314. http://dx.doi.org/10.1111/j.1365-313X.2009.03956.x  PMid:19566594
  4. Becraft, P. W., Stinards, P. S., McCarthy, D. R. & Crinkly (1996). A TNFR-like receptor kinase involved in maize epidermal differentiation. Science, 273, 1406. http://dx.doi.org/10.1126/science.273.5280.1406
  5. Betsuyaku, S., Takahashi, F., Kinoshita, A., Miwa, H., Shinozaki, K., Fukuda, H. & Sawa, S (2011). Mitogen-activated protein kinase regulated by the CLAVATA receptors contributes to shoot apical meristem homeostasis. Plant and Cell Physiology, 52, 14. http://dx.doi.org/10.1093/pcp/pcq157 PMid:20965998 PMCid:PMC3023851
  6. Bishop, G. J. & Koncz, C. (2002). Brassinosteroids and plant steroid hormone signaling. Plant Cell, 14, S97. PMid:12045272 PMCid:PMC151250
  7. Chen, K., Du, L. & Chen, Z. (2003). Sensitation of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Molecular Biology, 53, 61. http://dx.doi.org/10.1023/B:PLAN.0000009265.72567.58 PMid:14756307
  8. Chen, K., Fan, B., Du, L. & Chen, Z. (2004). Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Molecular Biology, 56(2), 271. http://dx.doi.org/10.1007/s11103-004-3381-2 PMid:15604743
  9. Chen, L. J., Wuriyanghan, H., Zhang, Y. Q., Duan, K. X., Chen, H. W., Li, Q. T., Xiang, L., He, S. J., Biao, M., Zhang, W. K., Lin, Q., Chen, S. Y. & Zhang, J. S. (2013). An S-Domain Receptor-Like Kinase, OsSIK2, Confers Abiotic Stress Tolerance and Delays Dark-Induced Leaf Senescence in Rice, Plant Physiology, 163(4), 1752. http://dx.doi.org/10.1104/pp.113.224881 PMid:24143807 PMCid:PMC3850199
  10. Chen, X. W., Shang, J. J. & Chen, D. X. (2006). A B-lectin receptor kinase gene conferring rice blast resistance. Plant Journal, 6, 794. http://dx.doi.org/10.1111/j.1365-313X.2006.02739.x PMid:16709195
  11. Chen, Z. (2001). A super-family of proteins with novel cysteine-rich repeats. Plant Physiology, 126(2), 473. http://dx.doi.org/10.1104/pp.126.2.473 PMid:11402176 PMCid:PMC1540112
  12. Clark, S. E., Williams, R. W. & Meyerowifz, E. M. (1997). A CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell, 89, 575. http://dx.doi.org/10.1016/S0092-8674(00)80239-1
  13. Czernic, P., Visser, B., Sun, W., Savouré, A., Deslandes, L., Marco, Y., Van Montagu, M. & Verbruggen, N. (1999). Characterization of an Arabidopsis thaliana receptor-like protein kinase gene activated by oxidative stress and pathogen attack. Plant Journal, 18(3), 321. http://dx.doi.org/10.1046/j.1365-313X.1999.00447.x PMid:10377997
  14. DeFalco, T. A., Chiasson, D., Munro, K., Kaiser, B. N. & Snedden, W. A. (2010). Characterization of GmCaMK1, a member of a soybean calmodulin-binding receptor-like kinase family. FEBS Letters, 584, 4717. http://dx.doi.org/10.1016/j.febslet.2010.10.059 PMid:21056039
  15. Deng, K., Wang, Q., Zeng, J., Guo, X., Zhao, X., Tang, D. & Liu, X. (2009). A lectin receptor kinase positively regulates ABA response during seed germination and is involved in salt and osmotic stress response, Journal of Plant Biology, 52, 493. http://dx.doi.org/10.1007/s12374-009-9063-5
  16. Diévart & Clark, S. E. (2004). LRR-containing receptors regulating plant development and defense. Development, 131, 251. PMid:14701679 
  17. Divi, U. K. & Krishna, P. (2009). Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. Nature Biotechnology, 26, 131. http://dx.doi.org/10.1016/j.nbt.2009.07.006
  18. Hanks, S. K. & Hunter, T. (1995). Protein kinases 6: The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB Journal, 9(8), 576. PMid:7768349
  19. Hardie, D. G. (1999). Roles of the AMP-activated/SNF1 protein kinase family in the response to cellular stress. Biochemistry Society Symposium, 64, 13. PMid:10207618
  20. He, Z. H., Fujiki, M. & Kohom, B. D. (1996). A cell wall associated receptor like protein kinase. Journal Biolology Chemistry, 271, 19789. http://dx.doi.org/10.1074/jbc.271.33.19789
  21. He, Z. H., He, D. & Kohom, B. D. (1998). Requirement for the induced expression of a cell wall associated recetor kinase for survival during the pathogen response. Plant Journal, 14, 55. http://dx.doi.org/10.1046/j.1365-313X.1998.00092.x
  22. Hua, D., Wang, C., He, J., Liao, H., Duan, Y., Zhu, Z., Guo, Y., Chen, Z. & Gong, Z. (2012). A plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis. The Plant Cell, 24, 2546. http://dx.doi.org/10.1105/tpc.112.100107 PMid:22730405 PMCid:PMC3406912
  23. Jinn, T. L., Stone, J. M. & Walker, J. C. (2000). HAESA and Arabidopsis leucin-rich repeats receptor kinase, control floral organ abscission. Genes Development, 14, 108.
  24. Jones, D. A. & Jones, J. D. G. (1996). The roles of leucine-rich repeat proteins in plant defenses.  Advance Botany Research/Advance Plant Pathology, 24, 90.
  25. Kinoshita, A., Betsuyaku, S., Osakabe, Y., Mizuno, S., Nagawa, S., Stahl, Y., Simon, R., Yamaguchi-Shinozaki, K., Fukuda, H. & Sawa, S. (2010). RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development, 137, 3911. http://dx.doi.org/10.1242/dev.048199 PMid:20978082
  26. Klaus-Heisen, D., Nurisso, A., Bogiel, A. P., Malick, M., Camut, S., Timmers, T., Carole, P., Michel, R., Theodorus, W. J. G., Anne, I., Benoit, L. & Julie, V. C. (2011). Structure–function similarities between a plant 488 receptor-like kinase and the human interleukin-1 receptor-associated kinase.  Journal of Biology and Chemistry, 286, 11202. http://dx.doi.org/10.1074/jbc.M110.186171 PMid:21205819 PMCid:PMC3064175
  27. Lee, H., Quinn, J. C., Prasanth, K. V., Swiss, V. A., Economides, K. D., Camacho, M. M., Spector, D. L. & Abateshen, C. (2006). PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Development, 20, 784. http://dx.doi.org/10.1101/gad.1392006 PMid:16600910 PMCid:PMC1472282
  28. Lee, I. C., Hong, S. W., Whang, S. S., Lim, P. O., Nam, H. G. & Koo, J. C. (2011). Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant and Cell Physiology, 52, 651. http://dx.doi.org/10.1093/pcp/pcr026 PMid:21382977
  29. Li, J. & Chory, J. (1997). A putative leucine-rich repeat receptor-kinase involved in brassinosteroid signal transduction. Cell, 90, 929. http://dx.doi.org/10.1016/S0092-8674(00)80357-8
  30. Luo, X. M., Lin, W. H. & Zhu, S. (2010). Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis. Developmnt Cell, 19, 872. http://dx.doi.org/10.1016/j.devcel.2010.10.023
  31. Marshall, A., Aalen, R. B. & Audenaert, D. (2012). Tackling drought stress: receptor-like kinases present new approaches. The Plant Cell, 24, 2262. http://dx.doi.org/10.1105/tpc.112.096677
  32. McCarthy, D. R. & Chory, J. (2000). Conservation and innovation in plantsignalling pathways. Cell, 103(2), 201. http://dx.doi.org/10.1016/S0092-8674(00)00113-6
  33. Mizuno, S., Osakabe, Y., Maruyama, K., Ito, T., Osakabe, K., Sato, T., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2007). Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. The Plant Journal, 50, 751. http://dx.doi.org/10.1111/j.1365-313X.2007.03083.x PMid:17419837
  34. Nasrallah, J. B. (2000). Cell-cell signaling in the self-incompatibility response. Current Opinion Plant Biology, 3, 368. http://dx.doi.org/10.1016/S1369-5266(00)00098-4
  35. Navarro-Gochicoa, M. T., Camut, S., Timmers, A. C. J., Niebel, A., Herv, C., Boutet, E., Bono, J. J., Imberty, A. & Cullimore, J. V. (2003). Characterization of four lectin-like receptor kinases expressed in roots of Medicago truncatula: structure, location, regulation of expression, and potential role in the symbiosis with Sinorhizobium meliloti. Plant Physiology, 133, 1893. http://dx.doi.org/10.1104/pp.103.027680 PMid:14630957 PMCid:PMC300742
  36. Nodine, M. D., Yadegari, R. & Tax, F. E. (2007). RPK1 and TOAD2 are two receptor-like kinases redundantly required for arabidopsis embryonic pattern formation. Development Cell, 12, 943. http://dx.doi.org/10.1016/j.devcel.2007.04.003 PMid:17543866
  37. Osakabe, Y., Mizuno, S., Tanaka, H., Maruyama, K., Osakabe, K., Todaka, D., Fujita, Y., Kobayashi, M., Shinozaki, K. & Yamaguchi-Shinozaki, K. (2010). Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. Journal of Biology and Chemistry, 285, 9190. http://dx.doi.org/10.1074/jbc.m109.051938
  38. Pastuglia, M., Roby, D., Dumas, C. & Cock, J. M. (1997a). Rapid induction by wounding and bacterial infection of an 5 gene family receptor-like kinase gene in Brassica olerace.  Plant Cell, 9, 49. http://dx.doi.org/10.1105/tpc.9.1.49 PMid:9014364 PMCid:PMC156900
  39. Pitorre, D., Llauro, C., Jobet, E., Guilleminot, J., Brizard, J. P., Delseny, M. & Lasserre, E. (2010). RLK7, A leucine-rich repeat receptor-like kinase, is required for proper germination speed and tolerance to oxidative stress in Arabidopsis thaliana.  Planta, 232, 1339. http://dx.doi.org/10.1007/s00425-010-1260-4
  40. Racolta, A.,  Bryan, A. C. & Tax, F. E. (2013). The receptor-like kinases GSO1 and GSO2 together regulate root growth in Arabidopsis through control of cell division and cell fate specification, Development Dynamics, 243(2), 257. http://dx.doi.org/10.1002/dvdy.24066 PMid:24123341
  41. Shiu, S. H. & Bleecker, A. B. (2001). Plant receptor-like kinase gene family: Diversity, function, and signaling. Science, 1. http://dx.doi.org/10.1126/stke.2001.113.re22
  42. Shiu, S. H. & Bleecker, A. B. (2003). Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology, 132(2), 530. http://dx.doi.org/10.1104/pp.103.021964 PMid:12805585 PMCid:PMC166995
  43. Shiu, S. H., Karlowski, W. M., Pan, R., Tzeng, Y. H., Mayer, K. F. & Li, W. H. (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell, 16, 1220.  http://dx.doi.org/10.1105/tpc.020834
  44. Smith, L. M., Bomblies, K. & Weigel, D. (2011). Complex evolutionary events at a tandem cluster of Arabidopsis thaliana genes resulting in a single-locus genetic incompatibility. PLoS Genetics, 7,  e1002164. http://dx.doi.org/10.1371/journal.pgen.1002164 PMid:21779175 PMCid:PMC3136440
  45. Song, W. Y., Wang, G. L., Chen, L. L., Kim, H. S., Pi, L. Y., Holsten, T., Gardner, J., Wang, B., Zhai, W. X., Zhu, L. H., Fauquet, C. & Ronald, P. (1995). A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science, 279, 1804. http://dx.doi.org/10.1126/science.270.5243.1804
  46. Sun, X. L., Yu, Q. Y., Tang, L. L., Ji, W., Bai, X., Cai, H., Liu, X. F., Ding, X. D. & Zhu, Y. M. (2012). GsSRK, a G-type lectin S-receptorlike serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. Journal of Plant Physiology, 170, 505. http://dx.doi.org/10.1016/j.jplph.2012.11.017 PMid:23276523
  47. Sun, Y., Fan, X. Y. & Cao, D. M. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Developmental Cell, 19, 765. http://dx.doi.org/10.1016/j.devcel.2010.10.010 PMid:21074725 PMCid:PMC3018842
  48. Tang, W., Kim, T. W., Oses-Prieto, J. A., Sun, Y., Deng, Z., Zhu, S., Wang, R., Burlingame, A. L. & Wang, Z. Y. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science, 321, 557. http://dx.doi.org/10.1126/science.1156973
  49. Torii, K. U. (2000). Receptor kinase activation and signal transduction in plants: An emerging picture. Current Opinion Plant Biology, 3, 361. http://dx.doi.org/10.1016/S1369-5266(00)00097-2
  50. Wang, G. L., Song, W. Y., Ruan, D. L., Sideris, S. & Ronald, P. C. (1996). The cloned gene, Xa21, confers resistance to multiple Xanthomonas oryzae pv. oryzae isolates in transgenic plants. Mol Plant Microbes Interaction, 9, 850. http://dx.doi.org/10.1094/MPMI-9-0850 PMid:8969533
  51. Wang, X., Zafian, P., Choudhary, M. T. & Lawton, M. (1996). The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins: (defense response/pathogenesis-related proteins/signal transduction/protein phosphorylation). Proceedings of the National Academic of Science, 93. p. 2598. http://dx.doi.org/10.1073/pnas.93.6.2598
  52. Wang, Z. Y. (2012). Brassinosteroids modulate plant immunity at multiple levels, Proceedings of the National Academic of Science, 109, 7. http://dx.doi.org/10.1073/pnas.1118600109 PMid:22198764 PMCid:PMC3252925
  53. Wolters, H. & Jurgens, G. (2009). Survival of the flexible: hormonal growth control and adaptation in plant development. Nature Review of Genetics, 10, 305. http://dx.doi.org/10.1038/nrg2558 PMid:19360022
  54. Yang, L. A., Ji, W., Zhu, Y. M., Gao, P., Li, Y., Cai, H., Bai, X. & Guo, D. J. (2010a). GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. Journal of Experimental Botany, 61, 2519. http://dx.doi.org/10.1093/jxb/erq084 PMid:20400529
  55. Yang, T., Chaudhuri, S., Yang, L., Du, L. & Poovaiah, B. W. (2010b). A calcium/calmodulin-regulated member of the receptor-like kinase family confers cold tolerance in plant.  Journal of Biology and Chemistry, 285, 7119. http://dx.doi.org/10.1074/jbc.M109.035659 PMCid:PMC2844161
  56. Zhang, M. P., Wu, Y. H., Lee, M. K., Liu, Y. H., Rong, Y., Santos, T. S., Wu, C. C., Xie, F. M., Nelson, R. L. & Zhang, H. B. (2010). Numbers of genes in the NBS and RLK families vary by more than four-fold within a plant species and are regulated by multiple factors. Nucleic Acids Residues, 38, 6513. http://dx.doi.org/10.1093/nar/gkq524
Open Access | Read Article
© Garg and Kumari (2016). This article published by Journal BiNET is freely available for anyone to read, share, download, print, permitted for unrestricted use and build upon, provided that the original author(s) and publisher are given due credit. All Published articles are distributed under the Creative Commons Attribution 4.0 International License.

For Authors

Browse journals
​
Manuscript preparation
Author downloads
Journal indexing
Journal help
​Journal blog

Submit Manuscript

Submission

Join as reviewer
Copyright: Journal BiNET 2014-2023. All rights reserved. Terms | Privacy | Feedback | Advertise with us | We are hiring !
  • Home
  • Journals
  • For Authors
    • Why Publish With Us
    • Manuscript Preparation
    • Journal Indexing
    • Similarity Index
    • Article Processing Charge
  • Review and Editorial
    • Review Policy
    • Editorial Policy
    • Terms and Conditions
  • Archive
  • Contact Us