Journal of Bioscience and Agriculture Research |
|
RESEARCH ARTICLE:
Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress
Samih M. Tamimi
Dept. of Biological Sciences, Faculty of Science, The University of Jordan, Amman - Jordan
J. bios. agric. res. | Volume 11, Issue 01, pp. 906-922 | Available online: 25 November 2016
DOI: 10.18801/jbar.110116.111
Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress
Samih M. Tamimi
Dept. of Biological Sciences, Faculty of Science, The University of Jordan, Amman - Jordan
J. bios. agric. res. | Volume 11, Issue 01, pp. 906-922 | Available online: 25 November 2016
DOI: 10.18801/jbar.110116.111
FULL TEXT PDF:
111_jbar_effect_of_seed_priming_on_growth_and_physiological_traits_of_five_jordanian_wheat_landraces_under_salt_stress.pdf | |
File Size: | 1031 kb |
File Type: |
-
Abstract
-
Citations
-
References
<
>
Title: Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress
Abstract: This study was conducted to evaluate the effects of salt stress and seed priming on germination performance, growth and physiology of five wheat (Triticum aestivum L.) landraces from Jordan namely; Ramtha, Ajloun, Madaba, Tafila and Karak. Results indicated that salinity decreased seed germination, relative water content, membranes stability index, shoot dry weight, leaf chlorophyll content and nitrate reductase activity. These effects were more pronounced in Ramtha, Ajloun and Madaba landraces as compared to Karak and Tafila. Significant increase in the accumulation of proline, total soluble sugars, soluble proteins and H2O2 was also observed in response to salinity, although variations existed among ladraces. Based on tolerance indices collected from parameters tested, the five landraces were clustered in two groups; Tafila and Karak landraces formed the first cluster while the second cluster consisted of Ajloun, Madaba and Ramtha landraces. The landraces of cluster 1 were classified, based on similarity and distance indices, as salt tolerant while those of cluster 2 were considered as salt sensitive Priming seeds with 50mM CaCl2 stimulated salt tolerance in all stressed wheat landraces via improving growth, stabilizing cell membranes, enhancing chlorophyll content, promoting the nitrate reductase activity and ROS scavenging activities in addition to up-regulating the accumulation of proline and soluble sugars. Results suggested that seed priming with CaCl2can be utilized for enhancing the salt tolerance potential of wheat and could contribute to promoting its cultivation in salt affected soils.
Key Words: Triticum aestivum, Stress, Salinity, Priming, Growth and Germination
Abstract: This study was conducted to evaluate the effects of salt stress and seed priming on germination performance, growth and physiology of five wheat (Triticum aestivum L.) landraces from Jordan namely; Ramtha, Ajloun, Madaba, Tafila and Karak. Results indicated that salinity decreased seed germination, relative water content, membranes stability index, shoot dry weight, leaf chlorophyll content and nitrate reductase activity. These effects were more pronounced in Ramtha, Ajloun and Madaba landraces as compared to Karak and Tafila. Significant increase in the accumulation of proline, total soluble sugars, soluble proteins and H2O2 was also observed in response to salinity, although variations existed among ladraces. Based on tolerance indices collected from parameters tested, the five landraces were clustered in two groups; Tafila and Karak landraces formed the first cluster while the second cluster consisted of Ajloun, Madaba and Ramtha landraces. The landraces of cluster 1 were classified, based on similarity and distance indices, as salt tolerant while those of cluster 2 were considered as salt sensitive Priming seeds with 50mM CaCl2 stimulated salt tolerance in all stressed wheat landraces via improving growth, stabilizing cell membranes, enhancing chlorophyll content, promoting the nitrate reductase activity and ROS scavenging activities in addition to up-regulating the accumulation of proline and soluble sugars. Results suggested that seed priming with CaCl2can be utilized for enhancing the salt tolerance potential of wheat and could contribute to promoting its cultivation in salt affected soils.
Key Words: Triticum aestivum, Stress, Salinity, Priming, Growth and Germination
.APA (American Psychological Association)
Tamimi, S. M. (2016). Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress. Journal of Bioscience and Agriculture Research, 11(01), 906-922.
MLA (Modern Language Association)
Tamimi, S. M. “Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress”. Journal of Bioscience and Agriculture Research, 11.01(2016), 906-922.
Chicago/Turabian
Tamimi, S. M. “Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress”. Journal of Bioscience and Agriculture Research, 11. no. 01(2016), 906-922.
Tamimi, S. M. (2016). Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress. Journal of Bioscience and Agriculture Research, 11(01), 906-922.
MLA (Modern Language Association)
Tamimi, S. M. “Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress”. Journal of Bioscience and Agriculture Research, 11.01(2016), 906-922.
Chicago/Turabian
Tamimi, S. M. “Effect of seed priming on growth and physiological traits of five Jordanian wheat (Triticum aestivum L.) landraces under salt stress”. Journal of Bioscience and Agriculture Research, 11. no. 01(2016), 906-922.
- Abd-El Baki, G. K., Siefritz, F., Man, H. M., Weiner, H., Haldenhoff, R. & Kaiser, W. M. (2000) Nitrate reductase in Zea mays L. under salinity. Plant, Cell and Environment, 23, 515–521. https://doi.org/10.1046/j.1365-3040.2000.00568.x
- Afzal, I., Basra, S. M. A., Shahid, M., Farooq, M. & Saleem, M. (2008). Priming enhances germination of spring maize (Zea mays L.) under cool conditions. Seed Science and Technology, 36, 497-503. https://doi.org/10.15258/sst.2008.36.2.26
- Afzal, I., Butt, A., Ur Rehman, H., Basra, S. M. A. & Afzal A. (2012). Alleviation of salt stress in fine aromatic rice by seed priming. Aust. J. Crop Sci. (10), 1401-1407.
- Almansouri, M., Kinet, J. M. & Lutts, S. (2001). Effect of salt osmotic stresses on germination in durum wheat (Triticum durum Desf.). Plant and Soil, 231, 243-254. https://doi.org/10.1023/A:1010378409663
- Anil, V. S., Krishnamurthy, P., Kuruvilla, S., Sucharitha, K., Thomas, G. & Mathew, M. K. (2005). Regulation of the uptake and distribution of Na+ in shoots of rice (Oryza sativa) variety Pokkali: role of Ca2+ in salt tolerance response. Physiologia Plantarum, 124, 451–464. https://doi.org/10.1111/j.1399-3054.2005.00529.x
- Apel, K. & Hirt, H. (2004). Reactive Oxygen species: metabolism, oxidative stress and signal transduction. Annu. Rev. Plant Biol. 55, 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701, PMid:15377225
- Aron, D. (1949). Copper enzymes isolated chloroplasts, polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1-15. https://doi.org/10.1104/pp.24.1.1
- Ashraf, M. & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3–16. https://doi.org/10.1016/j.plantsci.2003.10.024
- Ashraf, M. & Rauf, H. (2001). Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. Acta. Physio. Planta. 23, 407-414. https://doi.org/10.1007/s11738-001-0050-9
- Ashraf, M., Mukhtar, N., Rehman, S. & Rha, E. S. (2004). Salt-induced changes in photosynthetic activity and growth in a potential plant Bishop, sweed (Ammolei majus L.). Photosynthetica, 42, 543–50. https://doi.org/10.1007/S11099-005-0011-4
- Azaizeh, H., Gunse, B. &Steudle, E. (1992). Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol. 99, 886–894. https://doi.org/10.1104/pp.99.3.886, PMid:16669016 PMCid:PMC1080560
- Azco´n, R., Go´mez, M. & Tobar, R. M. (1996). Physiological and nutritional responses by Lactuca sativa L. to nitrogen sources and mycorrhizal fungi under drought conditions. Biology and Fertility of Soils, 22, 156–161. https://doi.org/10.1007/BF00384448
- Basra, S. M. A., Afzal, I., Hameed, A. & Rashid R. A. (2005). Inducing salt tolerance in wheat by seed vigor enhancement technique. International Journal of Agriculture and Biology, 2(1), 173-179.
- Bates, L., Waldren, R. P. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
- Bewley, J. D. & Black, M. (1994). Seeds: Physiology of Development and Germination. New York: Plenum Press. https://doi.org/10.1007/978-1-4899-1002-8
- Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
- Brush, S. B. (1999). Genes in the field: On-farm conservation of crop diversity. IPGRI/ IDRC/Lewis Publishers. pp. 51-76. https://doi.org/10.1201/9781420049824
- Dantas, B. F., Ribeiro, L. D. S. & Aragao, C. A. (2005). Physiological response of cowpea seeds to salinity stress. Rev. Bras. Sementes, 27, 144-148. https://doi.org/10.1590/S0101-31222005000100018
- Dubey, R. S. (2005). Photosynthesis in plants under stressful conditions. In: M. Pessarakli (Ed.). Photosynthesis handbooks. 2nd Ed. C. R. C. Press, New York. pp. 717-718.
- Farooq, M., Habib, M., Rehman, A., Wahid, A. & Munir, R. (2011). Employing aqueous allelopathic extracts of sunflower in improving salinity tolerance of rice. Journal of Agriculture and Social Sciences, 7, 75-80.
- Farooq, M., Basra, S.M.A., Wahid, A., Khaliq, A. & Kobayashi, N. (2009). Rice seed invigoration. In Sustainable Agriculture Reviews. Book Series, ed. E. Lichtfouse. Berlin, Germany: Springer.
- Farooq, M., Basra, S. M. A., Rehman, H. & Saleem, B. A. (2008). Seed priming enhances the performance of late sown wheat (Triticum aestivum L.) by improving chilling tolerance. J. Agron. Crop Sci., 194, 55‒60. https://doi.org/10.1111/j.1439-037X.2007.00287.x
- Farooq, M., Basra ,S.M.A. & Wahid, A. (2006). Priming of field sown rice seed enhances germination, seedling establishment, allometry and yield. Plant Growth Regul. 49,285–294. https://doi.org/10.1007/s10725-006-9138-y
- Hayat, S., Hayat, Q., Alyemeni, M. N., Wani, A. S., Pichtel, J. & Ahmad, A. (2012). Role of proline under changing environments. Plant Signal Behav. 7(11), 1456–1466. https://doi.org/10.4161/psb.21949, PMid:22951402 PMCid:PMC3548871
- ISTA, International Rules for Seed Testing (ISTA) (1985). Seed Sci. Technol. 13,299-335
- Iqbal, N., Ashraf, M. Y., Javed, F., Vicente, M. & Kafeel, A. (2006). Nitrate reduction and nutrient accumulation in wheat (Triticumaestivum L.) grown in soil salinization with four different salts. J. Pl. Nutr. 29, 409-421. https://doi.org/10.1080/01904160500524852
- Issam, N., Kawther, M., Haythem, M. & Moez. J. (2012). Effects of CaCl2 pretreatment on antioxidant enzyme and leaf lipid content of faba bean (Vicia faba L.) seedlings under cadmium stress. Plant Growth Regul. 68, 37-47. https://doi.org/10.1007/s10725-012-9691-5
- Jafar, M. Z., Farooq, M., Cheema, M. A., Afzal, I., Basra, S. M. A., Wahid, M. A., Aziz, T. & Shahid, M. (2012). Improving the performance of wheat by seed priming under saline conditions. J. Agron. Crop Sci., 198, 38–45. https://doi.org/10.1111/j.1439-037X.2011.00485.x
- Jaleel, C. A., Gopi, R., Manivannan, P. & Panneerselvam, R. (2008). Soil salinity alters the morphology in Catharanthus roseus and its effects on endogenous mineral constituents. Eur. Asia J. Bio. Sci. 2 (2), 18-25.
- Jamal, Y., Shafi, M., Bakht, J. & Arif, M. (2011). Effect of seed priming on growth and biochemical parameters of wheat under saline conditions. African J. Biotech. 10(75), 17127-17133.
- Jin, P. H., Kim, W. & Yun, D.(2016). A new insight of salt stress signaling in plant. Mol. Cells, 39(6), 447–459. https://doi.org/10.14348/molcells.2016.0083, PMid:27239814 PMCid:PMC4916396
- Jisha, K. C., Vijayakumari, K. & Puthur, J. T. (2013). Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant. 35, 1381–1396. https://doi.org/10.1007/s11738-012-1186-5
- Joshi, R., Rao, M. V & Baisakh, N. (2013) Arabidopsis plants constitutively overexpressing a myo-inositol 1-phosphate synthase gene (SaINO1) from the halophyte smooth cordgrass exhibits enhanced level of tolerance to salt stress. Plant Physiol. Bioche. 65, 61–66. https://doi.org/10.1016/j.plaphy.2013.01.009, PMid:23416497
- Kochak-Zadeh, A., Mousavi, S. & Nejad, M. (2013). The effect of salinity stress on germination and seedling growth of native and breeded varieties of wheat. J. Nov. Appl. Sci. 2(12), 703-709.
- Lorenzo, H., Siverio, J. & Caballero, M. (2001). Salinity and nitrogen fertilization and nitrogen metabolism in rose plants. J. Agric. Sci. 137, 77-84. https://doi.org/10.1017/S0021859601001150
- Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410. https://doi.org/10.1016/S1360-1385(02)02312-9
- Mohamed, A. & Basalah, M. O. ( 2015). The Active Role of Calcium Chloride on Growth and Photosynthetic Pigments of Cowpea "Vigna unguiculata L. (Walp)” Under Salinity Stress Conditions. Am-Euras. J. Agric. & Environ. Sci. 15(10), 2011-2020.
- Mozafari, H., Kalantari, K. M., Olia'ie, M. S., Torkzadeh, M., Salari, H. & Mirzaei, S. (2008). Role of Calcium in Increasing Tolerance of Descurainia sophia to Salt Stress . J. Agri. Soc. Sci. 4(2) , 53-58.
- Munns, R., James, R. A. & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57, 1025-1043. https://doi.org/10.1093/jxb/erj100, PMid:16510517
- Murakeozy, E. P., Nagy ,Z., Duhaze, C., Bouchereau ,A. & Tuba, Z. (2003). Seasonal changes in the levels of compatible osmolytes in three halophytic species of inland saline vegetation in Hungary. J. Plant Physiol. 160, 395–401. https://doi.org/10.1078/0176-1617-00790, PMid:12756919
- Muranaka, S., Shimizu, K. & Kato, M. (2002). A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. Photosynthetica, 40, 509-515.
- Nemat Alla, M. M. & Abogadallah, G. M. (2014). Supplementary CaCl2 ameliorates wheat tolerance to NaCl. Acta Pysiol. Plant. 36, 2103-2112. https://doi.org/10.1007/s11738-014-1587-8
- Park, H. J., Kim, W. & Yun, D. (2016). A New Insight of Salt Stress Signaling in Plant. Mol. Cells., 39(6), 447-459. https://doi.org/10.14348/molcells.2016.0083, PMid:27239814, PMCid:PMC4916396
- Rajendra, P., Sujatha, N. H., Sashidkar, R. B., Subramanyam, C., Davendranath, D., Gunasekaran, B., Aradhya, R. S. S. & Bhaskaran, A. (2005). Effects of power frequency electromagnetic fields on growth of germinating Vicia faba L., the broad bean. Electromagnetic Biology and Biology and Medicine, 24, 39-54. https://doi.org/10.1081/JBC-200055058
- Rosielle, A. A. & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non-stress environments. Crop Sci. J. 21, 943-946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x
- Sairam, R. K. (1994). Effect of moisture stress on physiological activities of two contrasting wheat genotypes. Indian. J. Exp. Biol. 32, 594-597.
- Sevengor, S., Yasar, F., Kusvura, S. & Ellialtýoglu, S. (2011). The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. Afr. J. Agr. Res. 6(21), 4920–4924
- Shulavev, V. & Oliver, D. J. (2006). Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol. 141, 367-372. https://doi.org/10.1104/pp.106.077925, PMid:16760489 PMCid:PMC1475455
- Silveira, J. A. G., Matos, J. C. S., Ceccato, V. M., Sampaio, A. H., Costa, R. C. L. & Viégas R. A. (1998). Induction of nitrate reductase activity and nitrogen fixation in two Phaseolus species in relation to exogenous nitrate level. Physiol. Mol. Biol. Plants, 4, 181-188
- Steel, R.G.D., Torrie, J.H. & Dickey, D.A. (1997). Principles and procedures of statistics, a biometrical approach. 3rd edition. McGraw-Hill Co. Inc., New York.
- Sumithra, K., Jutur, P. P., Carmel, B. D. & Reddy, A. R. (2006). Salinity-induced changes in two cultivars of Vigna radiate: responses of antioxidative and proline metabolism. Plant Growth Regul. 50, 11-22. https://doi.org/10.1007/s10725-006-9121-7
- Tyerman, S. D. & Skerrett, I. M. (1999). Root ion channels and salinity. Sci. Hort. 78, 175–235. https://doi.org/10.1016/S0304-4238(98)00194-0
- Van Hoorn, J. W. (1991). Development of soil salinity during germination and early seedling growth and its effect on several crops. Agric. Water Manage. 20, 17-28. https://doi.org/10.1016/0378-3774(91)90032-E
- Velikova, V., Yordanov, I. & Edreva, A. (2000). Oxidative Stress and Some Antioxidant Systems in Acid RainTreated Bean Plants: Protective Role of Exogenous Polyamines. Plant Science, 151, 59-66. https://doi.org/10.1016/S0168-9452(99)00197-1
- Wahid, A., Perveen, M., Gelani, S. & Basra, S. M. A. (2007). Pretreatment of seed with H2O2 improves salt tolerance of wheat seedlings by alleviation of oxidative damage and expression of stress proteins. J. Pl. Physiol. 164(3), 283-294. https://doi.org/10.1016/j.jplph.2006.01.005, PMid:16545492
- Wani, A. S, Ahmad, A., Hayat, S. & Tahir, I. (2016). Is foliar spray of proline sufficient for mitigation of salt stress in Brassica juncea cultivars? Environ. Sci. Pollut. Res. 23, 13413. https://doi.org/10.1007/s11356-016-6533-4, PMid:27026543
- Wyn Jones, R. G. (1981). Salt tolerance. In: C. B. Johnson (ed.). Physiological processes limiting plant productivity. Butterworths, London. pp. 271–292. https://doi.org/10.1016/B978-0-408-10649-8.50019-8
- Yancey, P. H. (2005). Organic osmolytesas compatible metabolic and counteracting cytoprotectants in high osmolarity and other stress. J. Exp. Biol. 208, 2819-2830. https://doi.org/10.1242/jeb.01730, PMid:16043587
- Yasmeen, A., Basra, S.M.A., Wahid, A., Farooq ,M., Nouman, W., Rehman H.U. & Hussain N. (2013). Improving Drought Resistance in Wheat (Triticum aestivum) by Exogenous Application of Growth Enhancers. Int. J. Agric. Biol., 15, 1307‒1312
- Yemm, E. W. & Willis, A. J. (1954). The Estimation of Carbohydrate in the Plant Extract by Anthrone Reagent. Journal of Biochemistry, 57, 508-514. https://doi.org/10.1042/bj0570508
- Yu Lei, M. K. & Shaozheng, L. (2000). Research on salt tolerance of some tree species on muddy seashore of north China. In: International seminar on “Prospects for saline agriculture”. April 10-12, Islamabad (Pakistan).
- Zerrad, W., Maataoui, B.S., Hilali, S., El Antri, S. & Hmyene, A. (2008). Etude comparative des mecanismes biochimiques de resistance au stress hydrique de deux variétés de blé dur. Lebanese Science Journal, 9(2), 27-36
- Zidan, I., Azaizeh, H. & Neumann, P. M. (1990). Does salinity reduce growth in maize root epidermal cells by inhibiting their capacity for cell wall acidification? Plant Physiol. 93, 7–11. https://doi.org/10.1104/pp.93.1.7, PMid:16667468 PMCid:PMC1062459
Open Access | Read Article
Your browser does not support viewing this document. Click here to download the document.
© Tamimi (2016). This article published by Journal BiNET is freely available for anyone to read, share, download, print, permitted for unrestricted use and build upon, provided that the original author(s) and publisher are given due credit. All Published articles are distributed under the Creative Commons Attribution 4.0 International License.
Require any edit or correction or changes in article? Please contact HERE.