Journal of Bioscience and Agriculture Research |
|
RESEARCH ARTICLE:
Biochemical investigation and seedling mortality rate of some selected boro rice cultivars at low temperature stress
Basunia S. C. (a), Sarker, B. C. (a), Md. Omar Kayess (b), Md. Imanur Rahman (b), Md. Kajal (c) and Md. Rakibul Alam (b)
aDept. of Agricultural Chemistry, Hajee Mohammad Danesh Science & Technology University, Dinajpur
bDept. of Genetics and Plant Breeding, Hajee Mohammad Danesh Science & Technology University, Dinajpur
cDept. of Agroforestry and Environment, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh
J. bios. agric. res. | Volume 12, Issue 01, pp. 976-985 | Available online: 25 January 2017
DOI: 10.18801/jbar.120117.120
Biochemical investigation and seedling mortality rate of some selected boro rice cultivars at low temperature stress
Basunia S. C. (a), Sarker, B. C. (a), Md. Omar Kayess (b), Md. Imanur Rahman (b), Md. Kajal (c) and Md. Rakibul Alam (b)
aDept. of Agricultural Chemistry, Hajee Mohammad Danesh Science & Technology University, Dinajpur
bDept. of Genetics and Plant Breeding, Hajee Mohammad Danesh Science & Technology University, Dinajpur
cDept. of Agroforestry and Environment, Hajee Mohammad Danesh Science & Technology University, Dinajpur, Bangladesh
J. bios. agric. res. | Volume 12, Issue 01, pp. 976-985 | Available online: 25 January 2017
DOI: 10.18801/jbar.120117.120
FULL TEXT PDF:

120_jbar_biochemical_investigation_and_seedling_mortality_rate_of_some_selected_boro_rice_cultivars_at_low_temperature_stress.pdf | |
File Size: | 926 kb |
File Type: |
-
Abstract
-
Citations
-
References
<
>
Title: Biochemical investigation and seedling mortality rate of some selected boro rice cultivars at low temperature stress
Abstract: A field study was conducted for biochemical investigation and seedling mortality rate determination of some selected Boro rice seedlings during the period of December, 2014 to January, 2015. Experiment time was characterized by prevailing low environmental temperature of below 15oC. Eight rice cultivars (V1: Pariza; V2: BRRI dhan29; V3: Shaita Boro; V4: BRRI dhan 28; V5: Jotapari; V6: BRRI dhan 16; V7: Pashushail; V8: Hybrid SL-8H) of different genetic constituents were evaluated in randomized complete block design with four replications. Two temperature regime was applied for seedling culture. Ambient temperature (T0) for field investigation and 4oC temperature (T1) environment was maintained only for physiological parameters. Changes of leaf Proline content, chlorophyll content (a and b), total carotenoid content and mortality rate were investigated. Result showed that V8 (Hybrid SL-8H) and V2 (BRRI dhan 29) seedling synthesized the maximum leaf Proline at low temperature than other cultivars. Highest amount of chlorophyll-a, was in V8T0 seedlings (10.03 mg g-1), while chlorophyll-b (2.063 mg g-1) and total carotenoid (4.0470 mg g-1) were highest in V3T0. Maximum chlorophyll-a/b ratio (6.729 mg) was recorded in V7T0. Mortality rate was lowest in Hybrid SL-8H. Results of the study revealed that Hybrid SL-8H cultivars howed comparatively better potentiality to survive at low temperature that might be selected for cultivation and popularization in the low temperature region of Bangladesh.
Key Words: Boro rice, Low temperature, Bio chemicals, Mortality and Selection
Abstract: A field study was conducted for biochemical investigation and seedling mortality rate determination of some selected Boro rice seedlings during the period of December, 2014 to January, 2015. Experiment time was characterized by prevailing low environmental temperature of below 15oC. Eight rice cultivars (V1: Pariza; V2: BRRI dhan29; V3: Shaita Boro; V4: BRRI dhan 28; V5: Jotapari; V6: BRRI dhan 16; V7: Pashushail; V8: Hybrid SL-8H) of different genetic constituents were evaluated in randomized complete block design with four replications. Two temperature regime was applied for seedling culture. Ambient temperature (T0) for field investigation and 4oC temperature (T1) environment was maintained only for physiological parameters. Changes of leaf Proline content, chlorophyll content (a and b), total carotenoid content and mortality rate were investigated. Result showed that V8 (Hybrid SL-8H) and V2 (BRRI dhan 29) seedling synthesized the maximum leaf Proline at low temperature than other cultivars. Highest amount of chlorophyll-a, was in V8T0 seedlings (10.03 mg g-1), while chlorophyll-b (2.063 mg g-1) and total carotenoid (4.0470 mg g-1) were highest in V3T0. Maximum chlorophyll-a/b ratio (6.729 mg) was recorded in V7T0. Mortality rate was lowest in Hybrid SL-8H. Results of the study revealed that Hybrid SL-8H cultivars howed comparatively better potentiality to survive at low temperature that might be selected for cultivation and popularization in the low temperature region of Bangladesh.
Key Words: Boro rice, Low temperature, Bio chemicals, Mortality and Selection
HOW TO CITE THIS ARTICLE?
APA (American Psychological Association)
Basunia, S. C., Sarker, B. C., Kayess, M. O., Rahman, M. I., Kajal, M. & Alam, M. R. (2017). Biochemical investigation and seedling mortality rate determination of some selected boro rice cultivarss at low temperature stress. Journal of Bioscience and Agriculture Research, 12(01), 976-985.
MLA (Modern Language Association)
Basunia, S. C., Sarker, B. C., Kayess, M. O., Rahman, M. I., Kajal, M. & Alam, M. R. “Biochemical investigation and seedling mortality rate determination of some selected boro rice cultivarss at low temperature stress”. Journal of Bioscience and Agriculture Research, 12.01(2017):976-985.
Chicago and or Turabian
Basunia, S. C., Sarker, B. C., Kayess, M. O., Rahman, M. I., Kajal, M. & Alam, M. R. “Biochemical investigation and seedling mortality rate determination of some selected boro rice cultivarss at low temperature stress”. Journal of Bioscience and Agriculture Research, 12 no.01(2017): 976-985.
APA (American Psychological Association)
Basunia, S. C., Sarker, B. C., Kayess, M. O., Rahman, M. I., Kajal, M. & Alam, M. R. (2017). Biochemical investigation and seedling mortality rate determination of some selected boro rice cultivarss at low temperature stress. Journal of Bioscience and Agriculture Research, 12(01), 976-985.
MLA (Modern Language Association)
Basunia, S. C., Sarker, B. C., Kayess, M. O., Rahman, M. I., Kajal, M. & Alam, M. R. “Biochemical investigation and seedling mortality rate determination of some selected boro rice cultivarss at low temperature stress”. Journal of Bioscience and Agriculture Research, 12.01(2017):976-985.
Chicago and or Turabian
Basunia, S. C., Sarker, B. C., Kayess, M. O., Rahman, M. I., Kajal, M. & Alam, M. R. “Biochemical investigation and seedling mortality rate determination of some selected boro rice cultivarss at low temperature stress”. Journal of Bioscience and Agriculture Research, 12 no.01(2017): 976-985.
[1]. Ahmed, A. & Ryosuke, S. (2000). Climate change and agricultural food production of Bangladesh: an impact assessment using GIS-based biophysical crop simulation model. Center for Spatial Information Science, University of Tokyo, 4: 6-1 Komaba, Japan.
[2]. Allen, D. J. & Ort, D. R. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science, 6, 36-42.
https://doi.org/10.1016/S1360-1385(00)01808-2
[3]. Andaya, V. C. & Mackill, D. J. (2003). Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. Journal of Experimental Botany, 54, 2579-2585.
https://doi.org/10.1093/jxb/erg243
PMid:12966040
[4]. Araus, J. I., Bort, J., CecCadelli, S. & Grando, S. (1997). Relationship between leaf structure and Carbon isotope discrimination in field grown barley. Plant Physiol. Biochem. 35, 533-541.
[5]. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris L. Plant Physiol. 24, 1-15.
https://doi.org/10.1104/pp.24.1.1
PMid:16654194 PMCid:PMC437905
[6]. Bangladesh Agricultural Research Council (BARC) (2005). Fertilizer Recommendation Guide. Bangladesh Agricultural Research Council, Dhaka, Bangladesh. pp. 60-70.
https://doi.org/10.1007/BF00018060
[7]. Bates, L. S. (1973). Rapid determination of free Proline for water-stress studies. Plant and Soil, 39, 205-207.
[8]. Climate Change Cell (2008). Economic modelling of climate change adaptation needs for physical infrastructures in Bangladesh Department of Environment, Ministry of Environment and Forests. Component 4b, Comprehensive Disaster Management Programme, Ministry of Food and Disaster Management, Bangladesh.
[9]. Da Cruz, R., Milach, S. C. & Federizzi, L. C. (2006). Inheritance of rice cold tolerance at the germination stage. Genetics and Molecular Biology, 29, 314-320.
https://doi.org/10.1590/S1415-47572006000200020
[10]. De Los Reyes, B.G., Morsy, M., Gibbons, J., Varma, T. S. N., Antoine, W., Mcgrath, J. M., Halgren, R. & Redus, M. (2003). A snapshot of the low temperature stress transcriptome of developing rice seedling (Oryza sativa L.) via ESTs from subtracted cDNA library. Theoretical and Applied Genetics, 107, 1071-1082.
https://doi.org/10.1007/s00122-003-1344-7
PMid:12827255
[11]. Díaz, S., Morejón, R., Castro, R. & Pérez, N. (2006). Comportamiento de genotipos de arroz (Oryza sativa L.) seleccionados para tolerancia a bajas temperaturas en siembra temprana de frío. Cultivos Tropicales, 27, 71-75.
[12]. Erge, H. S., Karadenz, F., Koca, N. & Soyer, Y. (2008). Effect of heat treatment on chlorophyll degradation and color loss in green peas. GIDA, 33(5), 225-233.
[13]. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185-212.
https://doi.org/10.1051/agro:2008021
[14]. Faruq, G., Zulaani, K. N., Jennifer, A. H., Subha, B., Zulqarnain, M., Nazia, A. M. & Mohammad, O. (2010). Evaluation of kernel elongation ratio and aroma association in global popular aromatic rice cultivars in tropical environment. African Journal of Agricultural Research, 5(12), 1515–1522.
[15]. Fujino, K. H., Sekiguchi, T., Sato, H., Kiuchi, Y., Nonoue, Y., Takeuchi, T., Ando, S.Y.L, & Yano, M. (2004). Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theoretical and Applied Genetics, 08, 794-799.
https://doi.org/10.1007/s00122-003-1509-4
PMid:14624339
[16]. Fujino, K., Sekiguchi, H., Matsuda, Y., Sugimoto, K., Ono, K. & Yano, M. (2008). Molecular indemnification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12623-12628.
https://doi.org/10.1073/pnas.0805303105
PMid:18719107 PMCid:PMC2527961
[17]. Ghaee, A., Moradi, F., Zare-Maivan, H., Zarinkamar, F., Pour Irandoost, H. & Sharifi P. (2011). Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. African Journal of Biotechnology, 10, 7617-7621.
[18]. Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research, 2nd Ed., John Wiley and Sons Inc., New York.
[19]. Guan, Y., Hu, J., Wang, X. & Shao, C. (1980). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ. Sci. B. 10(6), 427-433.
https://doi.org/10.1631/jzus.B0820373
PMid:19489108 PMCid:PMC2689555
[20]. Hare, P. D., Cress, W. A. & Van, S. J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environment, 21, 535-553.
https://doi.org/10.1046/j.1365-3040.1998.00309.x
[21]. Kamata, T. & Uemura, M. (2004). Solute accumulation in wheat seedlings during cold acclimation: contribution to increased freezing tolerance. Cryo Letters, 25, 311-322.
[22]. Kanada, C. B. H. (1974). Response of indica-japonica rice hybrids to low temperatures. SABRAO J, 6, 17–32.
[23]. Kennedy, G. & Burlingame, B. (2003). Analysis of food composition data on rice from a genetic resource perspective, Food Chem. 80, 589–596.
https://doi.org/10.1016/S0308-8146(02)00507-1
[24]. Lam-Sanchez, A., Santos, J. E., Takamura, K., Treptow, R. M. O. & Oliveira, J. E. D. (1993). Estudos nutricionais com arroz (Oryza sativa L.). Alimentos e Nutric-a˜o. 5, 37–48.
[25]. Lee, M. H. (2001). Low temperature tolerance in rice: the Korean experience. In: S. Fukai, J. Basnayake (Eds.), ACIAR Proceedings 101; Increased Lowland Rice Production in the Mekong Region. Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601, pp. 138–146.
[26]. Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M. & Yano, M. (2007). An efflux transporter of silicon in rice. Nature, 448, 209–211.
https://doi.org/10.1038/nature05964
PMid:17625566
[27]. McCarthy, A., Possingham, H. P., Day, J. R. & Tyre, A. J. (2001). Testing the accuracy of population viability analysis. Conservation Biology, 15(4), 1030–1038.
https://doi.org/10.1046/j.1523-1739.2001.0150041030.x
[28]. Melissa, A., Fitzgerald, Susan, R., McCouch & Robert D Hall (2009). Not just a grain of rice: the quest for quality. Trends in Plant Science, 14(3), 133-139.
https://doi.org/10.1016/j.tplants.2008.12.004
PMid:19230745
[29]. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett, 461, 205-210.
https://doi.org/10.1016/S0014-5793(99)01451-9
[30]. Pathak, A. K., Pathak, P. K. & Sharma, K. K. (2003). Recent Development in boro rice improvement and production for raising rice yield in Assam. Boro Rice. Edi. Singh RK, Hossain M and Thakur R Intl. Rice Res. Inst. India Office, Pusa Campus, New Delhi-110012, India. pp. 73-80.
[31]. Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73, 149-156.
https://doi.org/10.1023/A:1020470224740
PMid:16245116
[32]. Roy, S., Banerjee, A., Mawkhlieng, B., Misra, A. K., Pattanayak, A. & Harish, G. D. (2015). Genetic diversity and population structure in aromatic and quality rice (Oryza sativa L.) landraces from north-eastern India. PLoS One, 10(6), e0129607.
https://doi.org/10.1371/journal.pone.0129607
PMid:26067999 PMCid:PMC4467088
[33]. Russell, D. F. (1986). MSTAT-C Package Programme. Crop and Soil Science Department, Michigan State University, USA.
[34]. Sanghera, G. S., Wani, S. H., Hussain, W. & Singh N. B. (2011). Engineering cold stress tolerance in crop plants. Current Genomics, 12, 30-43.
https://doi.org/10.2174/138920211794520178
PMid:21886453 PMCid:PMC3129041
[35]. Sarker, B. C., Haq, M. M., Bashar, M. A., Roy, B. & Rahman, M. S. (2013). Physiological responses of rice seedlings towards screening out cold tolerant rice cultivars in northwest Bangladesh. Asian J. Exp. Biol. Sci. 4(4), 623-628.
[36]. Schonbeck, M. W. & Egley, G. H. (1980). Effects of temperature, water potential, and light on germination responses of redroot pigweed seeds to ethylene. Plant Physiol. 65, 1149-1154.
https://doi.org/10.1104/pp.65.6.1149
PMid:16661350 PMCid:PMC440500
[37]. Singh, U. P. (2002). Boro rice in eastern India. Rice-Wheat Consortium Regional Technical Coordination Committee Meeting, 10-14th February 2002, Rice-Wheat Consortium for the Indo-Gangetic Plains, New Delhi, India.
[38]. Sotelo, A., Saisa, V., Montolvo, I., Hernandez, M. & Hernandez, L. (1990). Chemical composition of different fractions of 12 Mexican varieties of rice obtained during milling. Cereal Chemistry, 67(2), 209-212.
[39]. Suzuki, M., Tsukamoto, T., Inoue, H., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S. & Nishizawa, N.K. (2008). Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol. Biol. 66(6), 609–617.
https://doi.org/10.1007/s11103-008-9292-x
PMid:18224446 PMCid:PMC2268730
[40]. Thomas, J. A., Jeffrey, A. C., Atsuko, K. & David, M. K. (2005). Regulating the proton budget of higher plant photosynthesis. Proceedings of the National Academy of Sciences, USA, 102, 9709–9713. https://doi.org/10.1073/pnas.0503952102
PMid:15972806 PMCid:PMC1172270
[41]. Trans, D. V. (2001). Closing the rice yield gap for food security. In: S. Peng, B. Hardy (eds.). Rice Research for food security and poverty alleviation, pp. 27-41. Progressing of the Intl. Rice Res. Conf. 31 March -3 April, 2000. Los Banos, IRRI, Philippines. 692-693.
[42]. UNDP & FAO (1988). Land report appraisal of Bangladesh for agricultural development report on 2 Agro-ecological regions of Bangladesh. United Nations Development Program and Food and Agriculture Organization. pp. 212-221.
[43]. Warth, C. J. & Ougham, H. J. (1993). Gene expression under temperature stress. New Phytologist, 125, 1-26. https://doi.org/10.1111/j.1469-8137.1993.tb03862.x
[44]. Ye, C. S., Fukai, I., Godwin, R., Reinke, P., Snell, J., Schiller & Basnayake, J. (2009). Cold tolerance in rice varieties at different growth stages. Crop & Pasture Science, 60, 328-338.
https://doi.org/10.1071/CP09006
[2]. Allen, D. J. & Ort, D. R. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in Plant Science, 6, 36-42.
https://doi.org/10.1016/S1360-1385(00)01808-2
[3]. Andaya, V. C. & Mackill, D. J. (2003). Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. Journal of Experimental Botany, 54, 2579-2585.
https://doi.org/10.1093/jxb/erg243
PMid:12966040
[4]. Araus, J. I., Bort, J., CecCadelli, S. & Grando, S. (1997). Relationship between leaf structure and Carbon isotope discrimination in field grown barley. Plant Physiol. Biochem. 35, 533-541.
[5]. Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts, polyphenol oxidase in Beta vulgaris L. Plant Physiol. 24, 1-15.
https://doi.org/10.1104/pp.24.1.1
PMid:16654194 PMCid:PMC437905
[6]. Bangladesh Agricultural Research Council (BARC) (2005). Fertilizer Recommendation Guide. Bangladesh Agricultural Research Council, Dhaka, Bangladesh. pp. 60-70.
https://doi.org/10.1007/BF00018060
[7]. Bates, L. S. (1973). Rapid determination of free Proline for water-stress studies. Plant and Soil, 39, 205-207.
[8]. Climate Change Cell (2008). Economic modelling of climate change adaptation needs for physical infrastructures in Bangladesh Department of Environment, Ministry of Environment and Forests. Component 4b, Comprehensive Disaster Management Programme, Ministry of Food and Disaster Management, Bangladesh.
[9]. Da Cruz, R., Milach, S. C. & Federizzi, L. C. (2006). Inheritance of rice cold tolerance at the germination stage. Genetics and Molecular Biology, 29, 314-320.
https://doi.org/10.1590/S1415-47572006000200020
[10]. De Los Reyes, B.G., Morsy, M., Gibbons, J., Varma, T. S. N., Antoine, W., Mcgrath, J. M., Halgren, R. & Redus, M. (2003). A snapshot of the low temperature stress transcriptome of developing rice seedling (Oryza sativa L.) via ESTs from subtracted cDNA library. Theoretical and Applied Genetics, 107, 1071-1082.
https://doi.org/10.1007/s00122-003-1344-7
PMid:12827255
[11]. Díaz, S., Morejón, R., Castro, R. & Pérez, N. (2006). Comportamiento de genotipos de arroz (Oryza sativa L.) seleccionados para tolerancia a bajas temperaturas en siembra temprana de frío. Cultivos Tropicales, 27, 71-75.
[12]. Erge, H. S., Karadenz, F., Koca, N. & Soyer, Y. (2008). Effect of heat treatment on chlorophyll degradation and color loss in green peas. GIDA, 33(5), 225-233.
[13]. Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185-212.
https://doi.org/10.1051/agro:2008021
[14]. Faruq, G., Zulaani, K. N., Jennifer, A. H., Subha, B., Zulqarnain, M., Nazia, A. M. & Mohammad, O. (2010). Evaluation of kernel elongation ratio and aroma association in global popular aromatic rice cultivars in tropical environment. African Journal of Agricultural Research, 5(12), 1515–1522.
[15]. Fujino, K. H., Sekiguchi, T., Sato, H., Kiuchi, Y., Nonoue, Y., Takeuchi, T., Ando, S.Y.L, & Yano, M. (2004). Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theoretical and Applied Genetics, 08, 794-799.
https://doi.org/10.1007/s00122-003-1509-4
PMid:14624339
[16]. Fujino, K., Sekiguchi, H., Matsuda, Y., Sugimoto, K., Ono, K. & Yano, M. (2008). Molecular indemnification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12623-12628.
https://doi.org/10.1073/pnas.0805303105
PMid:18719107 PMCid:PMC2527961
[17]. Ghaee, A., Moradi, F., Zare-Maivan, H., Zarinkamar, F., Pour Irandoost, H. & Sharifi P. (2011). Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. African Journal of Biotechnology, 10, 7617-7621.
[18]. Gomez, K. A. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research, 2nd Ed., John Wiley and Sons Inc., New York.
[19]. Guan, Y., Hu, J., Wang, X. & Shao, C. (1980). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang Univ. Sci. B. 10(6), 427-433.
https://doi.org/10.1631/jzus.B0820373
PMid:19489108 PMCid:PMC2689555
[20]. Hare, P. D., Cress, W. A. & Van, S. J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environment, 21, 535-553.
https://doi.org/10.1046/j.1365-3040.1998.00309.x
[21]. Kamata, T. & Uemura, M. (2004). Solute accumulation in wheat seedlings during cold acclimation: contribution to increased freezing tolerance. Cryo Letters, 25, 311-322.
[22]. Kanada, C. B. H. (1974). Response of indica-japonica rice hybrids to low temperatures. SABRAO J, 6, 17–32.
[23]. Kennedy, G. & Burlingame, B. (2003). Analysis of food composition data on rice from a genetic resource perspective, Food Chem. 80, 589–596.
https://doi.org/10.1016/S0308-8146(02)00507-1
[24]. Lam-Sanchez, A., Santos, J. E., Takamura, K., Treptow, R. M. O. & Oliveira, J. E. D. (1993). Estudos nutricionais com arroz (Oryza sativa L.). Alimentos e Nutric-a˜o. 5, 37–48.
[25]. Lee, M. H. (2001). Low temperature tolerance in rice: the Korean experience. In: S. Fukai, J. Basnayake (Eds.), ACIAR Proceedings 101; Increased Lowland Rice Production in the Mekong Region. Australian Centre for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601, pp. 138–146.
[26]. Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M. & Yano, M. (2007). An efflux transporter of silicon in rice. Nature, 448, 209–211.
https://doi.org/10.1038/nature05964
PMid:17625566
[27]. McCarthy, A., Possingham, H. P., Day, J. R. & Tyre, A. J. (2001). Testing the accuracy of population viability analysis. Conservation Biology, 15(4), 1030–1038.
https://doi.org/10.1046/j.1523-1739.2001.0150041030.x
[28]. Melissa, A., Fitzgerald, Susan, R., McCouch & Robert D Hall (2009). Not just a grain of rice: the quest for quality. Trends in Plant Science, 14(3), 133-139.
https://doi.org/10.1016/j.tplants.2008.12.004
PMid:19230745
[29]. Nanjo, T., Kobayashi, M., Yoshiba, Y., Kakubari, Y., Yamaguchi-Shinozaki, K. & Shinozaki, K. (1999). Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett, 461, 205-210.
https://doi.org/10.1016/S0014-5793(99)01451-9
[30]. Pathak, A. K., Pathak, P. K. & Sharma, K. K. (2003). Recent Development in boro rice improvement and production for raising rice yield in Assam. Boro Rice. Edi. Singh RK, Hossain M and Thakur R Intl. Rice Res. Inst. India Office, Pusa Campus, New Delhi-110012, India. pp. 73-80.
[31]. Porra, R. J. (2002). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research, 73, 149-156.
https://doi.org/10.1023/A:1020470224740
PMid:16245116
[32]. Roy, S., Banerjee, A., Mawkhlieng, B., Misra, A. K., Pattanayak, A. & Harish, G. D. (2015). Genetic diversity and population structure in aromatic and quality rice (Oryza sativa L.) landraces from north-eastern India. PLoS One, 10(6), e0129607.
https://doi.org/10.1371/journal.pone.0129607
PMid:26067999 PMCid:PMC4467088
[33]. Russell, D. F. (1986). MSTAT-C Package Programme. Crop and Soil Science Department, Michigan State University, USA.
[34]. Sanghera, G. S., Wani, S. H., Hussain, W. & Singh N. B. (2011). Engineering cold stress tolerance in crop plants. Current Genomics, 12, 30-43.
https://doi.org/10.2174/138920211794520178
PMid:21886453 PMCid:PMC3129041
[35]. Sarker, B. C., Haq, M. M., Bashar, M. A., Roy, B. & Rahman, M. S. (2013). Physiological responses of rice seedlings towards screening out cold tolerant rice cultivars in northwest Bangladesh. Asian J. Exp. Biol. Sci. 4(4), 623-628.
[36]. Schonbeck, M. W. & Egley, G. H. (1980). Effects of temperature, water potential, and light on germination responses of redroot pigweed seeds to ethylene. Plant Physiol. 65, 1149-1154.
https://doi.org/10.1104/pp.65.6.1149
PMid:16661350 PMCid:PMC440500
[37]. Singh, U. P. (2002). Boro rice in eastern India. Rice-Wheat Consortium Regional Technical Coordination Committee Meeting, 10-14th February 2002, Rice-Wheat Consortium for the Indo-Gangetic Plains, New Delhi, India.
[38]. Sotelo, A., Saisa, V., Montolvo, I., Hernandez, M. & Hernandez, L. (1990). Chemical composition of different fractions of 12 Mexican varieties of rice obtained during milling. Cereal Chemistry, 67(2), 209-212.
[39]. Suzuki, M., Tsukamoto, T., Inoue, H., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S. & Nishizawa, N.K. (2008). Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol. Biol. 66(6), 609–617.
https://doi.org/10.1007/s11103-008-9292-x
PMid:18224446 PMCid:PMC2268730
[40]. Thomas, J. A., Jeffrey, A. C., Atsuko, K. & David, M. K. (2005). Regulating the proton budget of higher plant photosynthesis. Proceedings of the National Academy of Sciences, USA, 102, 9709–9713. https://doi.org/10.1073/pnas.0503952102
PMid:15972806 PMCid:PMC1172270
[41]. Trans, D. V. (2001). Closing the rice yield gap for food security. In: S. Peng, B. Hardy (eds.). Rice Research for food security and poverty alleviation, pp. 27-41. Progressing of the Intl. Rice Res. Conf. 31 March -3 April, 2000. Los Banos, IRRI, Philippines. 692-693.
[42]. UNDP & FAO (1988). Land report appraisal of Bangladesh for agricultural development report on 2 Agro-ecological regions of Bangladesh. United Nations Development Program and Food and Agriculture Organization. pp. 212-221.
[43]. Warth, C. J. & Ougham, H. J. (1993). Gene expression under temperature stress. New Phytologist, 125, 1-26. https://doi.org/10.1111/j.1469-8137.1993.tb03862.x
[44]. Ye, C. S., Fukai, I., Godwin, R., Reinke, P., Snell, J., Schiller & Basnayake, J. (2009). Cold tolerance in rice varieties at different growth stages. Crop & Pasture Science, 60, 328-338.
https://doi.org/10.1071/CP09006
Open Access | Read Article
Your browser does not support viewing this document. Click here to download the document.
© Basunia (2017). This article published by Journal BiNET is freely available for anyone to read, share, download, print, permitted for unrestricted use and build upon, provided that the original author(s) and publisher are given due credit. All Published articles are distributed under the Creative Commons Attribution 4.0 International License.
Require any edit or correction or changes in article? Please contact HERE.