• Home
  • Journals
  • For Authors
    • Why Publish With Us
    • Manuscript Preparation
    • Journal Indexing
    • Similarity Index
    • Article Processing Charge
  • Review and Editorial
    • Review Policy
    • Editorial Policy
    • Terms and Conditions
  • Archive
  • Contact Us
JOURNAL BINET
  • Home
  • Journals
  • For Authors
    • Why Publish With Us
    • Manuscript Preparation
    • Journal Indexing
    • Similarity Index
    • Article Processing Charge
  • Review and Editorial
    • Review Policy
    • Editorial Policy
    • Terms and Conditions
  • Archive
  • Contact Us

Journal of Fisheries, Livestock and Veterinary Science

You are here: Home>JFLVS Journal​>JBAR Archive>Article Page: jflvs-020222-09.html
submit Manuscript
J. Fish. Livest. Vet. Res. | Volume 02, Issue 02, 76-87 | https://doi.org/10.18801/jflvs.020222.09
​Article type: Research article | Received: 25.03.2022; Revised: 15.05.2022; First published online: 30 May 2022

Poultry feed: a probe for antibiotics

Purba Islam 1, Subrato Kumar Biswas 1, Md. Rakib Hasan 1, Md. Imran Hossain 1, Arup Islam 2 and Shonkor Kumar Das 3
1 Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh,
2 Department of Microbiology, Mymensingh Medical College, Bangladesh
3 Department of Anatomy & Histology, Faculty of Veterinary Science, Bangladesh Agricultural University, Bangladesh

✉  Corresponding author: [email protected]  (Islam, P.).
Abstract
This study reviewed and compiled data over the last decade on the amounts of several antibiotic residues in poultry feed. The usage of antibiotics was evident in chicken growth and production. This review focused on poultry feed samples worldwide that were treated with several types of antibiotics, e.g., Aminoglycosides, β-Lactams, Lincosamides, Macrolides, Polypeptides, Quinolones, Tetracycline’s and Ionophores. They exceeded the FAO/WHO permissible limits in poultry in many cases. A considerable portion of antibiotics was released from poultry feed treated with these antibiotics. The detection methods used for these antibiotics were. TLC (thin-layer chromatography), Nouws Antibiotic Test (NAT), ELISA (enzyme-linked immunosorbent assay), PREMI®TEST, Mass spectrometry, Gas chromatography (GC) and high-performance liquid chromatography in conjunction with various detectors. This paper also indicated that a suitable antibiotic withdrawal time was not followed for using antibiotics. Furthermore, the consequences of these antibiotics on the environment and public health were also highlighted here. Finally, this paper proposes several recommendations in this context.
 
Key Words: Poultry feed, antibiotic residue, detection methods, MRL and Health hazards
Article Full-Text PDF:
09.02.02.2022_poultry_feed_a_probe_for_antibiotics.pdf
File Size: 752 kb
File Type: pdf
Download File


Share This Article:
Article Citations:
MLA
Islam, P. ”Poultry feed: a probe for antibiotics”. Journal of Fisheries, Livestock and Veterinary Science 02(02) (2022): 76-87.
 
APA
Islam, P., Biswas, S. K., Hasan, M. R., Hossain, M. I., Islam, A. and Das, S. K. (2022). Poultry feed: a probe for antibiotics. Journal of Fisheries, Livestock and Veterinary Science, 02(02), 76-87.
 
Chicago
Islam, P., Biswas, S. K., Hasan, M. R., Hossain, M. I., Islam, A. and Das, S. K. “Poultry feed: a probe for antibiotics”. Journal of Fisheries, Livestock and Veterinary Science 02(02) (2022):76-87.
 
Harvard
Islam, P., Biswas, S. K., Hasan, M. R., Hossain, M. I., Islam, A. and Das, S. K. 2022. Poultry feed: a probe for antibiotics. Journal of Fisheries, Livestock and Veterinary Science, 02(02), pp. 76-87.
 
Vancouver
Islam, P, Biswas, SK, Hasan, MR, Hossain, MI, Islam, A and Das, SK. Poultry feed: a probe for antibiotics. Journal of Fisheries, Livestock and Veterinary Science. 2022 May 02(02):76-87.
References:
  1. Aerts, M. M. L., Hogenboom, A. C. and Brinkman, U. A. T. (1995). Analytical strategies for the screening of veterinary drugs and their residues in edible products. Journal of Chromatography B: Biomedical Sciences and Applications, 667(1), 1–40. https://doi.org/10.1016/0378-4347(95)00021-A
  2. Ahmed, M. B. M., Rajapaksha, A. U., Lim, J. E., Vu, N. T., Kim, I. S., Kang, H. M., Lee, S. S. and Ok, Y. S. (2015). Distribution and accumulative pattern of tetracyclines and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. Journal of Agricultural and Food Chemistry, 63(2), 398–405. https://doi.org/10.1021/jf5034637
  3. Akter, S. and Uddin, M. (2009). Bangladesh poultry industry. Journal of Business and Technology, 4(2), 97–112.
  4. Ali, M. M. and Hossain, M. M. (2014). Challenges and Prospects of Poultry Industry in Bangladesh. European Journal of Business and Management, 6(7), 116–127.
  5. Apata, D. F. (2009). Antibiotic Resistance in Poultry. International Journal of Poultry Science,  8(4), 404–408.
  6. Barton, M. D. (2000). Antibiotic use in animal feed and its impact on human health. Nutrition Research Reviews, 13(2), 279–299. https://doi.org/10.1079/095442200108729106
  7. Bengtsson, B. and Greko, C. (2014). Antibiotic resistance — consequences for animal health, welfare, and food production. Upsala Journal of Medical Sciences, 119(2), 96–102. https://doi.org/10.3109/03009734.2014.901445
  8. Blasco, C., Picó, Y. and Torres, C. M. (2007). Progress in analysis of residual antibacterials in food. TrAC - Trends in Analytical Chemistry, 26(9), 895–913. https://doi.org/10.1016/j.trac.2007.08.001
  9. Burbee, C. R., Green, R. and Matsumoto, M. (1985). Antibiotics in Animal Feeds: Risks and Costs. American Journal of Agricultural Economics, 67(5), 966–970. https://doi.org/10.2307/1241355
  10. Cantwell, H. and O’Keeffe, M. (2006). Evaluation of the Premi® Test and comparison with the One-Plate Test for the detection of antimicrobials in kidney. Food Additives and Contaminants, 23(2), 120–125. https://doi.org/10.1080/02652030500357433
  11. Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H. and Pittet, D. (2012). Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrobial Resistance and Infection Control, 1, 1–13. https://doi.org/10.1186/2047-2994-1-11
  12. Cháfer-Pericás, C., Maquieira, Á. and Puchades, R. (2010). Fast screening methods to detect antibiotic residues in food samples. TrAC - Trends in Analytical Chemistry, 29(9), 1038–1049. https://doi.org/10.1016/j.trac.2010.06.004
  13. Chattopadhyay, M. K. (2014). Use of antibiotics as feed additives: A burning question. Frontiers in Microbiology, 5(JULY), 1–3. https://doi.org/10.3389/fmicb.2014.00334
  14. Cheong, C. K., Hajeb, P., Jinap, S. and Ismail-Fitry, M. R. (2010). Sulfonamides determination in chicken meat products from Malaysia. International Food Research Journal, 17(4), 885–892.
  15. Chowdhury, R., Haque, M., Islam, K. and Khaleduzzaman, A. (1970). A Review On Antibiotics In An Animal Feed. Bangladesh Journal of Animal Science, 38(1–2), 22–32. https://doi.org/10.3329/bjas.v38i1-2.9909
  16. Commission, T. E. (2010). on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Official Journal of the European Union, 2377.
  17. Cronly, M., Behan, P., Foley, B., Malone, E., Earley, S., Gallagher, M., Shearan, P. and Regan, L. (2010). Development and validation of a rapid multiclass method for the confirmation of fourteen prohibited medicinal additives in pig and poultry compound feed by liquid chromatography-tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 53(4), 929–938. https://doi.org/10.1016/j.jpba.2010.06.027
  18. Darwish, W. S., Eldaly, E. A., El-Abbasy, M. T., Ikenaka, Y., Nakayama, S. and Ishizuka, M. (2013). Antibiotic residues in food: The African scenario. Japanese Journal of Veterinary Research, 61(SUPPL.).
  19. De Alwis, H. and Heller, D. N. (2010). Multiclass, multiresidue method for the detection of antibiotic residues in distillers grains by liquid chromatography and ion trap tandem mass spectrometry. Journal of Chromatography, 1217(18), 3076–3084. https://doi.org/10.1016/j.chroma.2010.02.081
  20. Dhama, K., Malik, Y. S., Angad, G., Veterinary, D. and Munir, M. (2016). Animal enteric viral emergencies: An overview. International Academy of Biosciences (IAB), October, 130.
  21. Elmund, G. K., Morrison, S. M., Grant, D. W. and Nevins, M. P. (1971). Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bulletin of Environmental Contamination and Toxicology, 6(2), 129–132. https://doi.org/10.1007/BF01540093
  22. Er, B., Kaynak Onurdǎ, F., Demirhan, B., Özgen Özgacar, S., Bayhan Öktem, A. and Abbasoǧlu, U. (2013). Screening of quinolone antibiotic residues in chicken meat and beef sold in the markets of Ankara, Turkey. Poultry Science, 92(8), 2212–2215. https://doi.org/10.3382/ps.2013-03072
  23. Evans, T. (2016). Global Poultry Trends - Developing Countries’ Main Drivers in Chicken Consumption.
  24. FAO/WHO. (2009). Joint FAO/WHO Expert Committee on Food Additives. Meeting (70th : 2008: Geneva, Switzerland). Evaluation of certain veterinary drug residues in food: seventieth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization, 144. http://apps.who.int/iris/bitstream/handle/10665/44085/WHO_TRS_954_eng.pdf;jsessionid=61919C78A931D298ED2F7E6C2418C4F1?sequence=1
  25. Fein, S. B., Jordan Lin, C. T. and Levy, A. S. (1995). Foodborne illness: Perceptions, experience, and preventive behaviors in the United States. Journal of Food Protection, 58(12), 1405–1411. https://doi.org/10.4315/0362-028X-58.12.1405
  26. Feinman, S. E. and Matheson, J. C. (1978). Draft environmental impact statement: subtherapeutic antibacterial agents in animal feeds. [Department of Health, Education, and Welfare, Public Health Service], Food and Drug Administration, Bureau of Veterinary Medicine.
  27. Fox, E. M., Leonard, N. and Jordan, K. (2011). Molecular diversity of listeria monocytogenes isolated from irish dairy farms. Foodborne Pathogens and Disease, 8(5), 635–641. https://doi.org/10.1089/fpd.2010.0806
  28. Gemperline, P. J. (1999). Computation of the range of feasible solutions in self-modeling curve resolution algorithms. Analytical Chemistry, 71(23), 5398–5404. https://doi.org/10.1021/ac990648y
  29. Gross, J. H. . (2006). Mass spectrometry: a textbook. Springer Science & Business Media.
  30. Guan, Y., Wang, B., Gao, Y., liu, W., Zhao, X., Huang, X. and Yu, J. (2017). Occurrence and Fate of Antibiotics in the Aqueous Environment and Their Removal by Constructed Wetlands in China: A review. Pedosphere, 27(1), 42–51. https://doi.org/10.1016/S1002-0160(17)60295-9
  31. Gustafson, R. H. and Bowen, R. E. (1997). Antibiotic use in animal agriculture The variety of antibiotics, the routes of administration and. Journal of Applied Microbiology, 83, 531–541.
  32. Hughes, P. and Heritage, J. (2002). Antibiotic Growth-Promoters in Food Animals. FAO Animal Production and Health Paper, 160.
  33. Hussein, M. A. and Khalil, S. . (2013). Screening of Some Antibiotics and Anabolic SteroidsResidues in Broiler Fillet Marketed in El-Sharkia Governorate. Life Science Journal, 10(1), 2111–2118.
  34. Islam, F., Hossain, M. H., Akhtar, A. and Hossain, M. S. (2014). Prospect and Challenges in Broiler Farming of Barguna District in Bangladesh. Journal of Bioscience and Agriculture Research, 2(1), 44–51. https://doi.org/10.18801/jbar.020114.18
  35. Islam, M. K., Uddin, M. F. and Alam, M. M. (2014). Challenges and Prospects of Poultry Industry in Bangladesh. European Journal of Business and Management, 6(7), 116–127.
  36. Jjemba, P., Weinrich, L., Cheng, W., Giraldo, E. and Lechevallier, M. W. (2010). Regrowth of Potential Opportunistic Pathogens and Algae in Reclaimed-Water Distribution Systems. Applied and Environmental Microbiology, 76(13), 4169–4178. https://doi.org/10.1128/AEM.03147-09
  37. Khalil, D., Becker, C. A. M. and Al, K. E. T. (2017). Monitoring the Decrease in Susceptibility to Ribosomal RNAs Targeting Antimicrobials and Its Molecular Basis. Microbial Drug Resistance, 23(6), 799–811. https://doi.org/10.1089/mdr.2016.0268
  38. Knecht, B. G., Strasser, A., Dietrich, R., Märtlbauer, E., Niessner, R. and Weller, M. G. (2004). Automated Microarray System for the Simultaneous Detection of Antibiotics in Milk. Analytical Chemistry, 76(3), 646–654. https://doi.org/10.1021/ac035028i
  39. Kumar, K., Gupta, S. ., Chander, Y. and Singh, A. K. (2005). Antibiotic use in agriculture and its impact on the terrestrial environment. Advances in Agronomy, 87(05), 1–54. https://doi.org/10.1016/S0065-2113(05)87001-4
  40. Lee, M. H., Lee, H. J. and Ryu, P. D. (2001). Public Health Risks: Chemical and Antibiotic Residues - Review. In Asian-Australian Journal of Animal Science, 14(3), 402–413.
  41. Lequin, R. (2005). Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clinical Chemistry, 51(12), 2415–2418. https://doi.org/10.1373/clinchem.2005.051532
  42. Liousia, M. Gousia, P., Εconomou, V., Sakkas, H. and Papadopoulou, C. (2015). Screening for antibiotic residues in swine and poultry tissues using the STAR test. International Journal of Food Safety, Nutrition and Public Health, 5(2), 173–183.
  43. Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules, 23(4), 795. https://doi.org/10.3390/molecules23040795
  44. Marshall, B. M. and Levy, S. B. (2011). Food animals and antimicrobials: Impacts on human health. Clinical Microbiology Reviews, 24(4), 718–733. https://doi.org/10.1128/CMR.00002-11
  45. Mehtabuddin, Mian, A. A., Ahmad, T., Nadeem, S., Tanveer, Z. I. and Arshad, J. (2012). Sulfonamide residues determination in commercial poultry meat and eggs. Journal of Animal and Plant Sciences, 22(2), 473–478.
  46. Mohammed, D. H. A., Ahmed, A. S., Jassim, S. G., Hashim, A. F. and Laibi, M. J. (2017). Detection of Antibiotic Residues in Food Animal Source and Feed. Iraqi J. Agric. Res., 3(Special Issue), 133–139.
  47. Moyane, J. N., Jideani, A. I. O. and Aiyegoro, O. A. (2013). Antibiotics usage in food-producing animals in South Africa and impact on human: Antibiotic resistance. African Journal of Microbiology Research, 7(24), 2990–2997. https://doi.org/10.5897/ajmr2013.5631
  48. Muaz, K., Riaz, M., Akhtar, S., Park, S. and Ismail, A. (2018). Antibiotic residues in chicken meat: Global prevalence, threats, and decontamination strategies: A review. Journal of Food Protection, 81(4), 619–627. https://doi.org/10.4315/0362-028X.JFP-17-086
  49. Mund, M. D., Khan, U. H., Tahir, U., Mustafa, B. E. and Fayyaz, A. (2017). Antimicrobial drug residues in poultry products and implications on public health: A review. International Journal of Food Properties, 20(7), 1433–1446. https://doi.org/10.1080/10942912.2016.1212874
  50. Myllyniemi, A. L., Rannikko, R., Lindfors, E., Niemi, A. and Bäckman. (2000). Microbiological and chemical detection of incurred penicillin G, oxytetracycline, enrofloxacin and ciprofloxacin residues in bovine and porcine tissues. Food Additives and Contaminants, 17(12), 991–1000. https://doi.org/10.1080/02652030050207774
  51. Nisha, A. R. (2008). Antibiotic residues - A global health hazard. Veterinary World, 1(12), 375–377. https://doi.org/10.5455/vetworld.2008.375-377
  52. Olusola, A. V., Diana, B. E. and Ayoade, O. . (2012). Assessment of tetracycline, lead and cadnium in in frozen chicken meat in lagos and ibadan Nigeria. Pakistan Journal of Biological Science, 15(17), 839–844.
  53. Oluwasile, B., Agbaje, M., Ojo, O. and Dipeolu, M. (2014). Antibiotic usage pattern in selected poultry farms in Ogun state. Sokoto Journal of Veterinary Sciences, 12(1), 45. https://doi.org/10.4314/sokjvs.v12i1.7
  54. Paige, J. C. (1994). Analysis of tissue residues. FDA Vet, 9(6), 4–6.
  55. Pan, M. and Chu, L. M. (2017). Fate of antibiotics in soil and their uptake by edible crops. Science of the Total Environment, 599–600, 500–512. https://doi.org/10.1016/j.scitotenv.2017.04.214
  56. Pavlov, A., Lashev, L., Vachin, I. and Rusev, V. (2008). Residues of Antimicrobial Drugs in Chicken Meat and Offals. Trakia Journal of Sciences, 61(6), 23–25. http://www.uni-sz.bg
  57. Pena, A., Silva, L. J. G., Pereira, A., Meisel, L. and Lino, C. M. (2010). Determination of fluoroquinolone residues in poultry muscle in Portugal. Analytical and Bioanalytical Chemistry, 397(6), 2615–2621. https://doi.org/10.1007/s00216-010-3819-0
  58. Phillips, I., Casewell, M., Cox, T., De Groot, B., Friis, C., Jones, R., Nightingale, C., Preston, R. and Waddell, J. (2004). Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. Journal of Antimicrobial Chemotherapy, 53(1), 28–52. https://doi.org/10.1093/jac/dkg483
  59. Pikkemaat, M. G., Dijk, S. O. v., Schouten, J., Rapallini, M. and van Egmond, H. J. (2008). A new microbial screening method for the detection of antimicrobial residues in slaughter animals: The Nouws antibiotic test (NAT-screening). Food Control, 19(8), 781–789. https://doi.org/10.1016/j.foodcont.2007.08.002
  60. Ratten, I. (2003). Developmental Toxicity Studies of the Quinolone Antibacterial Agent Irloxacin in Rats and Rabbits. Arzneimittelforschung, 53(2), 121–125.
  61. Reece, R. L. (1988). Review of adverse effects of chemotherapeutic agents in poultry. World’s Poultry Science Journal, 44(3), 193–216. https://doi.org/10.1079/WPS19880020
  62. Robert, C., Gillard, N., Brasseur, P., Ralet, N., Dubois, M. and Delahaut, P. (2015). Rapid multiresidue and multiclass screening for antibiotics and benzimidazoles in feed by ultra high performance liquid chromatography coupled to tandem mass spectrometry. Food Control, 50(January 2014), 509–515. https://doi.org/10.1016/j.foodcont.2014.09.040
  63. Ronquillo, M. G. and Hernandez, J. C. A. (2017). Antibiotic and synthetic growth promoters in animal diets: Review of impact and analytical methods. Food Control, 72, 255–267. https://doi.org/10.1016/j.foodcont.2016.03.001
  64. Salama, N. A., Abou-Raya, S. H., Shalaby, A. R., Emam, W. H. and Mehaya, F. M. (2011). Incidence of tetracycline residues in chicken meat and liver retailed to consumers. Food Additives and Contaminants: Part B Surveillance, 4(2), 88–93.https://doi.org/10.1080/19393210.2011.585245
  65. Salehzadeh, F., Salehzadeh, A., Rokni, N., Madani, R. and Golchinefar, F. (2007). Enrofloxacin residue in chicken tissues from Tehran slaughterhouses in Iran. Pakistan Journal of Nutrition, 6(4), 409–413. https://doi.org/10.3923/pjn.2007.409.413
  66. Salman, A. and State, K. (2014). Screening of Antibiotic Residues in Poultry Liver , Kidney and Muscle in Khartoum State, Sudan. Journal of Applied and Industrial Sciences, 2(3), 116–122.
  67. Sarker, Y. A., Hasan, M. M., Paul, T. K., Rashid, S. Z., Alam, M. N. and Sikder, M.H. (2018). Screening of antibiotic residues in chicken meat in Bangladesh by thin layer chromatography. Journal of Advanced Veterinary and Animal Research, 5(2), 140–145. https://doi.org/10.5455/javar.2018.e257
  68. Shareef, M., Jamel, Z. T. and Yonis, K. M. (2009). Detection of antibiotic residues in stored poultry products. Iraqi Journal of Veterinary Sciences, 23(3), 45–49.
  69. Sherma, J. and Fried, B. eds. (2003). Handbook of thin-layer chromatography. CRC press.
  70. Singh, S., Shukla, S., Tandia, N., Kumar, N. and Paliwal, R. (2011). Antibiotic residues: a global challenge. Pharma Science Monitor, 2(4), 1135–1151.
  71. Stolker, A. A. M., Zuidema, T., Nielen, M. W. F. and Nielen, M. W. F. (2007). Residue analysis of veterinary drugs and growth-promoting agents. TrAC - Trends in Analytical Chemistry, 26(10), 967–979. https://doi.org/10.1016/j.trac.2007.09.008
  72. Styczynski, M. P., Moxley, J. F., Tong, L., Walther, J., Jensen, K. and Stephanopoulos, G. (2007). Systematic Identification of Conserved Metabolites in GC / MS Data for Metabolomics and Biomarker Discovery. Analytical Chemistry, 79(3), 966–973.
  73. Sundlof, S. F., Fernandez, A. H. and Paige, J. C. (2000). Antimicrobial drug residues in food-producing animals. Antimicrobial Therapy in Veterinary Medicine, 3, 744–759.
  74. Waksman, S. A. (1947). What is an Antibiotic or an Antibiotic Substance? Mycologia, 39(5), 565–569. https://doi.org/10.1080/00275514.1947.12017635
  75. Yeom, J. R., Yoon, S. U. and Kim, C. G. (2017). Quantification of residual antibiotics in cow manure being spread over agricultural land and assessment of their behavioral effects on antibiotic resistant bacteria. Chemosphere, 182, 771–780. https://doi.org/10.1016/j.chemosphere.2017.05.084
  76. Zhao, S., Li, X., Ra, Y., Li, C., Jiang, H., Li, J., Qu, Z., Zhang, S., He, F., Wan, Y., Feng, C., Zheng, Z. and Shen, J. (2009). Developing and optimizing an immunoaffinity cleanup technique for determination of quinolones from chicken muscle. Journal of Agricultural and Food Chemistry, 57(2), 365–371. https://doi.org/10.1021/jf8030524

© 2022 The Authors. This article is freely available for anyone to read, share, download, print, permitted for unrestricted use and build upon, provided that the original author(s) and publisher are given due credit. All Published articles are distributed under the Creative Commons Attribution 4.0 International License.
​Require any changes or update in this article? Please contact from HERE.
Journal of Fisheries, Livestock and Veterinary Science.

For Authors

Browse journals
​
Manuscript preparation
Author downloads
Journal indexing
Journal help
​Journal blog

Submit Manuscript

Submission

Join as reviewer
Copyright: Journal BiNET 2014-2023. All rights reserved. Terms | Privacy | Feedback | Advertise with us | We are hiring !
  • Home
  • Journals
  • For Authors
    • Why Publish With Us
    • Manuscript Preparation
    • Journal Indexing
    • Similarity Index
    • Article Processing Charge
  • Review and Editorial
    • Review Policy
    • Editorial Policy
    • Terms and Conditions
  • Archive
  • Contact Us