Journal of Science, Technology and Environment Informatics |
|
Research article:
Biosorption of Cd2+, Ni2+ and Pb2+ by the shell of Pentaclethra macrophylla: equilibrium isotherm studies
Okwunodulu Felicia Uchechuku (1), Odoemelam Stevens Azubuike (2) and Eddy Nnabuk Okon (3)
Michael Okpara University of Agriculture Umudike, Nigeria (1&2)
Dept. of Chemistry, Ahmadu Bello University Zaria, Nigeria (3)
Volume 02, Issue 01, pp. 26-35 | Date of Publication: 31 October 2015
DOI: http://dx.doi.org/10.18801/jstei.020115.13
Biosorption of Cd2+, Ni2+ and Pb2+ by the shell of Pentaclethra macrophylla: equilibrium isotherm studies
Okwunodulu Felicia Uchechuku (1), Odoemelam Stevens Azubuike (2) and Eddy Nnabuk Okon (3)
Michael Okpara University of Agriculture Umudike, Nigeria (1&2)
Dept. of Chemistry, Ahmadu Bello University Zaria, Nigeria (3)
Volume 02, Issue 01, pp. 26-35 | Date of Publication: 31 October 2015
DOI: http://dx.doi.org/10.18801/jstei.020115.13
biosorption_of_cd2__ni2__and_pb2__by_the_shell_of_pentaclethra_macrophylla_equilibrium_isotherm_studies.pdf |
Abstract: Pretreatment of the seed shell of Pentaclethra macrophylla Benth was carried out using 0.3 mol of thioglycollic acid. Biosorption analysis was conducted using different variations in the initial metal ion concentrations (100, 80, 60, 40, 20, and 10) mg/l at pH of neutral point, room temperature, contact time of 1 hr using 1 gram of the 250 mesh size of both the untreated and treated Pentaclethra macrophylla seed shells. Biosorption capacity of Pentaclethra macrophylla seed shell was observed to be high with increasing higher concentrations of the metal ions in both treated and untreated Pentaclethra macrophylla seed shells though maximum concentrations of Cd2+ and Pb2+ sorbed were observed by untreated Pentaclethra macrophylla seed shell while Ni2+ was highly sorbed by the treated Pentaclethra macrophylla seed shell. Data gotten via study gave good fit for different sorption isotherms such as Freundlich, Temkin and Dubinin-Radushkevich (D-RIM). Multilayer biosorption with non-uniform distribution over the heterogeneous surface was observed and the biosorption of the metal ions onto untreated and treated Pentaclethra macrophylla seed shells was spontaneous and was consistent with the pattern of physical adsorption.
Key words: Pentaclethra macrophylla seed shell, Freundlich,Temkin and Dubinin-Radushkevich (D-RIM) Isotherms and Metal ions
Key words: Pentaclethra macrophylla seed shell, Freundlich,Temkin and Dubinin-Radushkevich (D-RIM) Isotherms and Metal ions
APA (American Psychological Association)
Uchechuku, O. F., Azubuike, O. S. & Okon, E. N. (2015). Biosorption of Cd2+, Ni2+ and Pb2+ by the shell of pentaclethra macrophylla: equilibrium isotherm studies. Journal of Science, Technology & Environment Informatics, 02(01), 26–35.
MLA (Modern Language Association)
Uchechuku, O. F., Azubuike, O. S. & Okon, E. N. “Biosorption of Cd2+, Ni2+ and Pb2+ by the shell of pentaclethra macrophylla: equilibrium isotherm studies.” Journal of Science, Technology & Environment Informatics, 02.01 (2015): 26-35.
Chicago/Turabian
Uchechuku, O. F., Azubuike, O. S. & Okon, E. N. “Biosorption of Cd2+, Ni2+ and Pb2+ by the shell of pentaclethra macrophylla: equilibrium isotherm studies.” Journal of Science, Technology & Environment Informatics, 02, no. 01 (2015): 26-35.
Uchechuku, O. F., Azubuike, O. S. & Okon, E. N. (2015). Biosorption of Cd2+, Ni2+ and Pb2+ by the shell of pentaclethra macrophylla: equilibrium isotherm studies. Journal of Science, Technology & Environment Informatics, 02(01), 26–35.
MLA (Modern Language Association)
Uchechuku, O. F., Azubuike, O. S. & Okon, E. N. “Biosorption of Cd2+, Ni2+ and Pb2+ by the shell of pentaclethra macrophylla: equilibrium isotherm studies.” Journal of Science, Technology & Environment Informatics, 02.01 (2015): 26-35.
Chicago/Turabian
Uchechuku, O. F., Azubuike, O. S. & Okon, E. N. “Biosorption of Cd2+, Ni2+ and Pb2+ by the shell of pentaclethra macrophylla: equilibrium isotherm studies.” Journal of Science, Technology & Environment Informatics, 02, no. 01 (2015): 26-35.
Volesky, B. (1990). Biosorption of heavy metals. McGill University, Montreal, pp. 396.
Gad, G. M. & White C. (1993). Microbial treatment of metal pollution- a working biotechnology? Trends Biotechnol., 11, 353-359.
DOI: http://dx.doi.org/10.1016/0167-7799(93)90158-6
Wilde, E. W. & Benemann, J. R. (1993). Removal of heavy metals by the use of micro algae. Biotech. Adv., 11, 781-812.
DOI: http://dx.doi.org/10.1016/0734-9750(93)90003-6
Schiewer, S. & volesky, B. (1995). Modelling of the proton-metal ion exchange in biosorption. Environ. Sci. Technol., 29, 3049-3058.
DOI: http://dx.doi.org/10.1021/es00012a024
Kratochvil, D. & Volesky, B. (1998a). Water Resources, 32, 2760-2768.
U. S. EPA, (2000). Water technology fact sheet. Chemical Precipitation. USEPA 832-F00-018, Washington, DC
Biowise, (2003). Contaminated land remediation. A Review of Biological Technology, London, DTI.
Aboulroos, S. A., Hetal, M. D. & Kanel, M. M. (2006). Remediation of Pb and Cd Polluted Soils Using Insitu Immobilization and Phytoextraction Techniques. Soil Sediment Contam., 15, 199-215.
DOI: http://dx.doi.org/10.1080/15320380500506362
Bhatti, H. N., Muntaz, B., Hanif, M. A. & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera.Process Biochem., 42, 547 – 553.
DOI: http://dx.doi.org/10.1016/j.procbio.2006.10.009
Foo, K. Y. and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2 – 10.
DOI: http://dx.doi.org/10.1016/j.cej.2009.09.013
Adamson, A. W. & Gast, A. P. (1997). Physical chemistry of surface. Sixth edition. Wiley-Interscience, New York.
Haghseresht, F. & Lu, G. (1998). Adsorption characteristics of phenolic compounds onto coal-rejec-derived adsorbents. Energy fuel, 12, 1100 – 1107.
DOI: http://dx.doi.org/10.1021/ef9801165
Mittal, A., Kurup, L. & Mittal, J. (2007). Freundlich and Langmuir adsorption isotherms and kinetics for the removal of tartrazine from aqueous solutions using hen feathers. Journal of Hazardous Materials, 146(1-2), 243 – 248.
DOI: http://dx.doi.org/10.1016/j.jhazmat.2006.12.012
Foo, K. Y. & Hameed, B. H. (2012). A rapid regeneration of methylene blue dye loaded activated carbons with microwave heating. Journal of Analytical and Applied Pyrolysis, 98, 123 – 128.
DOI: http://dx.doi.org/10.1016/j.jaap.2012.07.006
Noor, E. A. (2009). Potential of aqueous extract of Hibiscus sabdariffa leaves for inhibiting the corrosion of aluminum in alkaline solutions. J. Appl. Electrochem, 39, 1465 – 1475. DOI: http://dx.doi.org/10.1007/s10800-009-9826-1
Gad, G. M. & White C. (1993). Microbial treatment of metal pollution- a working biotechnology? Trends Biotechnol., 11, 353-359.
DOI: http://dx.doi.org/10.1016/0167-7799(93)90158-6
Wilde, E. W. & Benemann, J. R. (1993). Removal of heavy metals by the use of micro algae. Biotech. Adv., 11, 781-812.
DOI: http://dx.doi.org/10.1016/0734-9750(93)90003-6
Schiewer, S. & volesky, B. (1995). Modelling of the proton-metal ion exchange in biosorption. Environ. Sci. Technol., 29, 3049-3058.
DOI: http://dx.doi.org/10.1021/es00012a024
Kratochvil, D. & Volesky, B. (1998a). Water Resources, 32, 2760-2768.
U. S. EPA, (2000). Water technology fact sheet. Chemical Precipitation. USEPA 832-F00-018, Washington, DC
Biowise, (2003). Contaminated land remediation. A Review of Biological Technology, London, DTI.
Aboulroos, S. A., Hetal, M. D. & Kanel, M. M. (2006). Remediation of Pb and Cd Polluted Soils Using Insitu Immobilization and Phytoextraction Techniques. Soil Sediment Contam., 15, 199-215.
DOI: http://dx.doi.org/10.1080/15320380500506362
Bhatti, H. N., Muntaz, B., Hanif, M. A. & Nadeem, R. (2007). Removal of Zn(II) ions from aqueous solution using Moringa oleifera.Process Biochem., 42, 547 – 553.
DOI: http://dx.doi.org/10.1016/j.procbio.2006.10.009
Foo, K. Y. and Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2 – 10.
DOI: http://dx.doi.org/10.1016/j.cej.2009.09.013
Adamson, A. W. & Gast, A. P. (1997). Physical chemistry of surface. Sixth edition. Wiley-Interscience, New York.
Haghseresht, F. & Lu, G. (1998). Adsorption characteristics of phenolic compounds onto coal-rejec-derived adsorbents. Energy fuel, 12, 1100 – 1107.
DOI: http://dx.doi.org/10.1021/ef9801165
Mittal, A., Kurup, L. & Mittal, J. (2007). Freundlich and Langmuir adsorption isotherms and kinetics for the removal of tartrazine from aqueous solutions using hen feathers. Journal of Hazardous Materials, 146(1-2), 243 – 248.
DOI: http://dx.doi.org/10.1016/j.jhazmat.2006.12.012
Foo, K. Y. & Hameed, B. H. (2012). A rapid regeneration of methylene blue dye loaded activated carbons with microwave heating. Journal of Analytical and Applied Pyrolysis, 98, 123 – 128.
DOI: http://dx.doi.org/10.1016/j.jaap.2012.07.006
Noor, E. A. (2009). Potential of aqueous extract of Hibiscus sabdariffa leaves for inhibiting the corrosion of aluminum in alkaline solutions. J. Appl. Electrochem, 39, 1465 – 1475. DOI: http://dx.doi.org/10.1007/s10800-009-9826-1
© Uchechuku et al. 2015. This article published by Journal BiNET is freely available for anyone to read, share, download, print, permitted for unrestricted use and build upon, provided that the original author(s) and publisher are given due credit. All Published articles are distributed under the Creative Commons Attribution 4.0 International License.